浙江帕卡热处理科技有限公司 土壤和地下水自行监测报告

委托单位: 浙江帕卡热处理科技有限公司

编制单位: 湖州中一检测研究院有限公司

编制时间:二〇二五年十月

1.			- 1
	1.1		1
	1.2		2
	1.3		5
2.			7
	2.1		7
	2.2		0
	2.3		
3.			8
	3.1		8
	3.2		
4.			
	4.1		
	4.2		
	4.3		
5.			
٥.	5.1		
	5.2	/	
	5.3	,	
6.	3.3		
0.	6.1	/	
	6.2		
	6.3		
	6.4		
7.	0.4		
	7.1		
	7.1		
	7.2		
8.	1.3		
ο.	8.1		_
	8.2		
	8.3		
0	8.4		
9.	0.1		
	9.1		
	9.2		
	9.3		5/

10.	91
10.1	91
10.2	92
1	93
2	95
3	98
4	

1.1

2016 5 28 2016 31

и и

2019 25

2021 6

" 2021 250

и

<

2023 >

<2023 > 2023 10

2023 6

2024 9 2 Carbozen Mega 250 HJ 1209-2021 5.4 a b c 2024 10 2025 3 2025 2025 10 2025 2025 HJ 1209-2021 1.2 1.2.1 2020.1.1 2015.1.1 2019.1.1 2018.1.1 2020 4 682

748

2021

2016 31 2015 17 3 2021 15 27 2023 28 2008 48 1.2.2 HJ 25.1-2019 HJ 25.2-2019 2017 72 HJ 1209-2021 2021 1 2019 770 2019 770 HJ/T 166-2004 HJ 164-2020 HJ 1019-2019 GB/T 32722-2016 HJ 493-2009 HJ 494-2009 GB 50021-2009 GB/T 50145-2007 GB 50026-2007 DZ/T 0148-2014 1.2.3 2022 2020

2017

2024 3

2016 47

2015 2015 71

2008 8

" 2021

250

<2025 > 2025

10

1.2.4

GB/T 14848-2017

GB36600-2018

DB33/T 892-2022

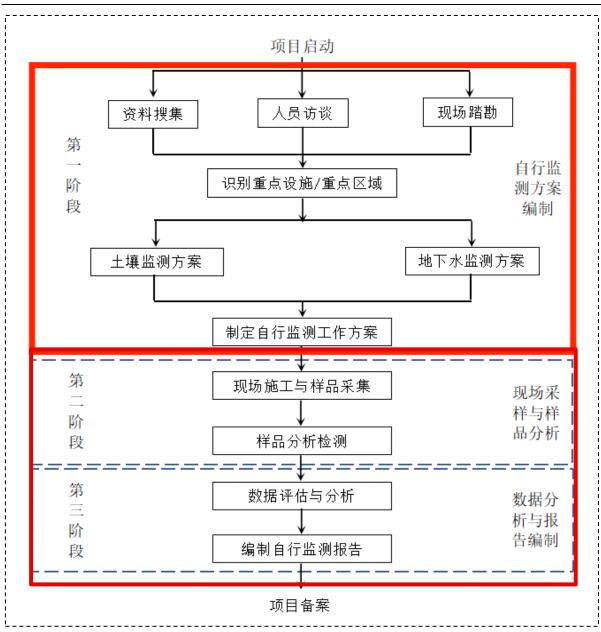
2020 62

RSLs 2024.5 TR=1E-06 HQ=1.0

1.2.5

1.2-1

1.2-1


	1.2 1	
1	5000	
2	250	
3		
4		GoogleEarth

1.3.1

1.3.2

HJ 1209-2021

1.3-1

1.3-1

2.1

2.1.1

518

11429m² 17.1

2.1-1

2.1-1

2.1-1

2.1-2

2.1-2

2.1-1

m	

2.1-2

2.1-2

	2000	2.1-2	2000	
	X m	Y m	0	0
J1	3420307.210	499833.752	119.998261	30.903786
J2	3420274.170	499891.972	119.998870	30.903488
Ј3	3420245.012	499942.735	119.999401	30.903225
J4	3420236.142	499958.031	119.999561	30.903145
J5	3420230.599	499967.878	119.999664	30.903095
J6	3420164.189	499934.704	119.999317	30.902496
Ј7	3420182.593	499901.818	119.998973	30.902662
Ј8	3420209.091	499855.451	119.998488	30.902901
J9	3420240.135	499799.908	119.997907	30.903181
J10	3420291.023	499829.163	119.998213	30.903640

2.1.2

1

518 Google

500m 500m

2.1-3

2

3

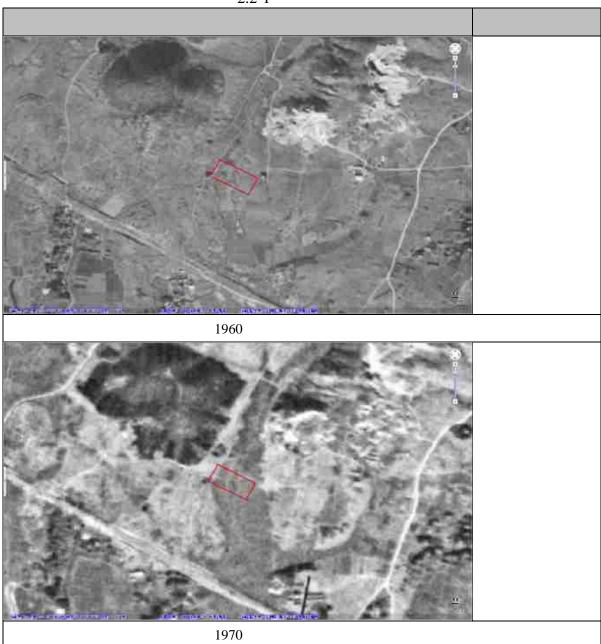
570m 500m

518

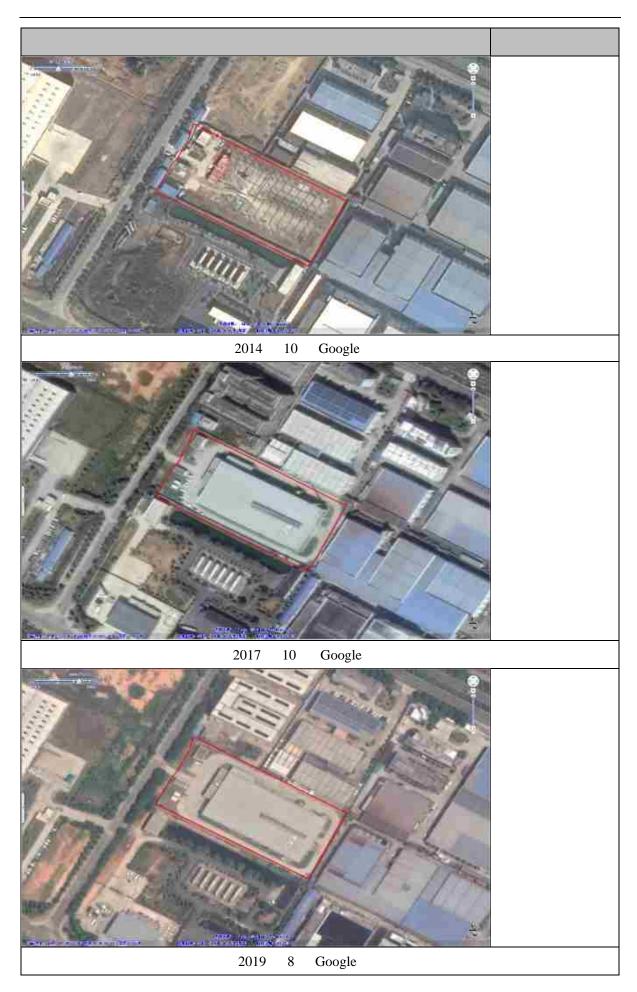
500m

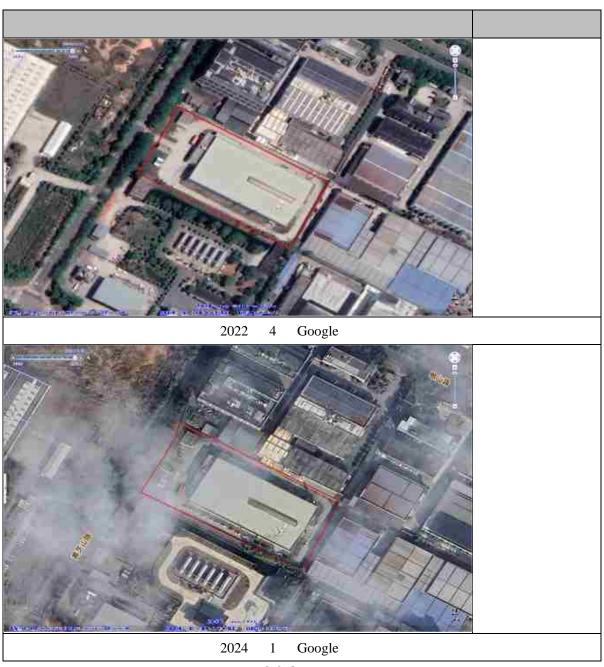
2.1-3

					m	500m	
				S	570	0	
		280	S	560	0	GB3095-2012	
			80	SE	700	0	
			SW	780	0		
				S	2.4km		GB3838-
				S	1.5km	1	2002


2.2.1

1 2009


2014


2.2-1

2.2-1

2.2-3

2.2-3

	2.2-3			
-	2009			-
2009	2015		-	-
2015		C336		-

2.2.2

2014 34

Carbozen Mega

2.2-2

 2.2-2					
		9133050007163836X4			
	518				
114	29m ² 17.1				
		18768276879			
C336					
2013		2024			
		-			

2023

2.3-1 1 2023

2.3-1 2 2023

2.3-1 2023

			0	۰	
	S1/W1	/	119.999081	30.902723	
	S2/W2	/	119.999332	30.902773	
	S3		119.998745	30.902907	
	S4/W3	/	119.998255	30.903614	
/	S0/W0	/	119.996044	30.908342	

2.3-2 2023

	2.5-2
S1	1 pH 45 a pH
S2	b 1,1- 1,2- 1,1- -1,2- 1,2- 1,1,1,2-
S3	1,1,2,2- 1,2,3- 1,1,1- 1,1,2- 1,2- 1,4-
S4	c 2- [a] [a] [b] [k]
S0	2 C ₁₀ -C ₄₀
W1	a pH CaCO ₃
W2	${ m COD_{Mn}}$ ${ m O_2}$
W3	b N N
W0	2 C ₁₀ -C ₄₀

2023 5

1

4

11 2023 pН C_{10} - C_{40}

GB36600-2018 45

GB36600-2018

2 2023 5

 C_{10} - C_{40} GB14848-2017 " 20 " 15

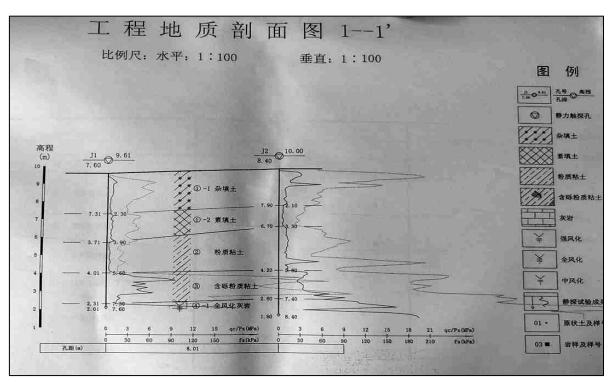
GB/T14848-

2017

3.1

3.1-1

3.1-1


-1	1.50~3.10	7.96~10.00	5.56~7.90
-2	0.6~1.60	4.86~6.70	
-2	0.0-1.00	4.00 40.70	
	1.00 2.00	0.51.5.00	
	1.00~2.60	2.71~5.22	
~			
	0.7~2.90	0.36~4.02	

15~20% 10~40mm

-1 0.9~2.20 -0.74~1.57

-2 0.5~1.4 -1.74~0.57

-3 5.50 -1.74~0.57

3.1-2

4 7

3.1-1 m

-1 1.50~3.10 5.56~7.90

-2	0.6~1.60	4.86~6.70	
	1.00~2.60	2.71~5.22	~
	0.7~2.90	0.36~4.02	
-1	0.9~2.20	-0.74~1.57	
-2	0.5~1.4	-1.74~0.57	/
-3		/	/

1

-1 -2

1.0~2.0

2

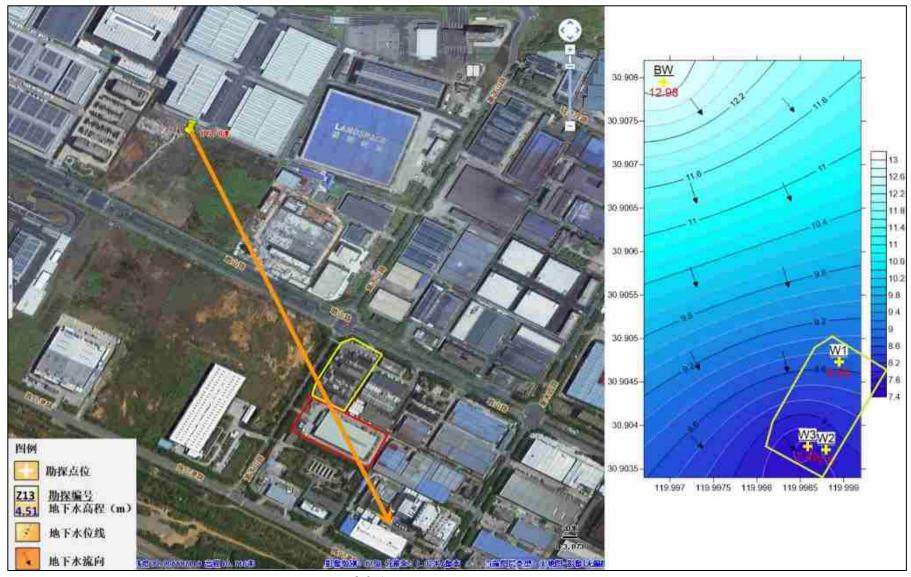
7.51~8.36m 1999 3.76 85

3.21 85

3

2022

3.2-1 Surfer


3.2-

1

3.2-1 m

	2000		
	0	0	
W1	119.998944	30.904731	8.69
W2	119.998797	30.903719	7.90
W3	119.998583	30.903761	7.49

	2000		
	0	0	
BW	119.996928	30.907956	12.98

3.2-1

4.1

3000

250

4.1-1

1	()	3000	-	3000	
2		/	250	250	300d

4.1-2

1			1	1.4m ³	/	/	1	1.4m ³	/
2			2	1.4m ³	/	/	2	1.4m ³	/
3			2	1.2m³	/	/	2	1.2m ³	/
4		*	2	0.9m³	1	0.9m³	3 2	0.9m^3	+1
5	AB		1	2.6m³	/	/	1	2.6m³	/
6	AB		1	2.5 m³	/	/	1	2.5 m³	/
7			1	2.5 m³	/	/	1	2.5 m³	/
8	AB		1	$3.5 \mathrm{m}^3$	/	/	1	3.5m^3	/
9	AB2		1	4.5m ³	/	/	1	4.5m ³	/
10			2	2t	/	/	2	2t	/
11			1	10t	/	/	1	10t	/
12			1	20000 m³/h	/	/	1	20000 m³/h	/
13			1	6m³/d	/	/	1	6m³/d	/
14			1	3.8m³	/	/	1	3.8m³	/
15			1	2.5m ³	/	/	1	2.5m ³	/
16			1	5.7m³	/	/	1	5.7m³	/
17	4		1	8.5m ³	/	/	1	8.5m ³	/
18			1	5.7m³	/	/	1	5.7m³	/
19			1	3.5m³	/	/	1	3.5m ³	/
20	2		1	4.5m³	/	/	1	4.5m³	/

21			1	2.5m ³	/	/	1	2.5m ³	/
22			1	2.5m ³	/	/	1	$2.5m^{3}$	/
23			1	$3.5 \mathrm{m}^3$	/	/	1	3.5m^3	/
24			1	3.m³	/	/	1	3.5m³	/
25			1	2.5m³	/	/	1	2.5m³	/
26			1	JCK-G SP450	/	/	1	JCK-G SP450	/
27			1	300L	/	/	1	300L	/
28			1	XXZP- A30	/	/	1	XXZP- A30	/
29			1	/	/	/	1	/	/
30			3	XXXP - H36	/	/	3	XXXP - H36	/
31			7	CG-100	/	/	7	CG -100	/
32			1	-	/	/	1	1	/
33			1	-	/	/	1	1	/
34			1	-	/	/	1	-	/
35	Ca	arbozen Mega	/	/	1	/	1	/	+1
36		2	/	/	1	100L/	1	100L/	+1
37			/	/	1	/	1	/	+1
38			/	/	1	50L/h	1	50L/h	+1
39			/	/	1	/	1	/	+1
40			/	/	1	/	1	/	+1
41			/	/	1	/	1	/	+1
42			/	/	1	/	1	/	+1
43			/	/	1	/	1	/	+1
44			/	/	1	/	1	/	+1
45			/	/	1	/	1	/	+1
46			1	55kw	/	/	1	55kw	/
47			1	$15m^3$	/	/	1	$15m^3$	/

4.1.1

4.1-3

			.1-3				
						(%	
1		*	/	3000t	3000t		
	_						12
2				1t	1t		17
	-						71
2				25:	26		45
3		-1		26t	26t		27.5
	-						27.5 70
4		-2		50t	50t		30
5		-1		5t	5t	-2,4,6- 1,3,5-	100
	-			2.	2:		25
6		-2		2t	2t		75
							45
7		-1		22t	22t		45
	-						10
							45
8		-2	AB	2t	2t		20 30
							50
9	_	-3		2t	2t		30
10		-4		20t	20t		
11	_	NaOH		1t	1t	>98.5	
	-			10t	10t	90	
12		КОН		17t	17t	95	
13	-			1t	1t	100	
							90
		-1					>7
14				1t	1t		3
		-2					90
	_						>10
15				12t	12t		99
16				2.4t	2.4t		100
							50
17				0.6t	0.6t		20
							18
10	_			0.64	0.64		12
18]			0.6t	0.6t		-

					(%
19		/	/	250	
					30
20			/	0.15t	5
20			/	0.13t	30
					35
21			/	42Mpa	-
22			/	28Mpa	-
23			/	36Мра	-
24			/	8Mpa	-
25			/	0.011	-
26			/	3000Nm ³	-
27	-2		/	50L	90
21	-2		/	JUL	>10
28			/	100L	_
29			0.5t	1t	75
30			3439t	3734t	
31			200 kWh	232.7 kWh	
32			2000t	2000t	

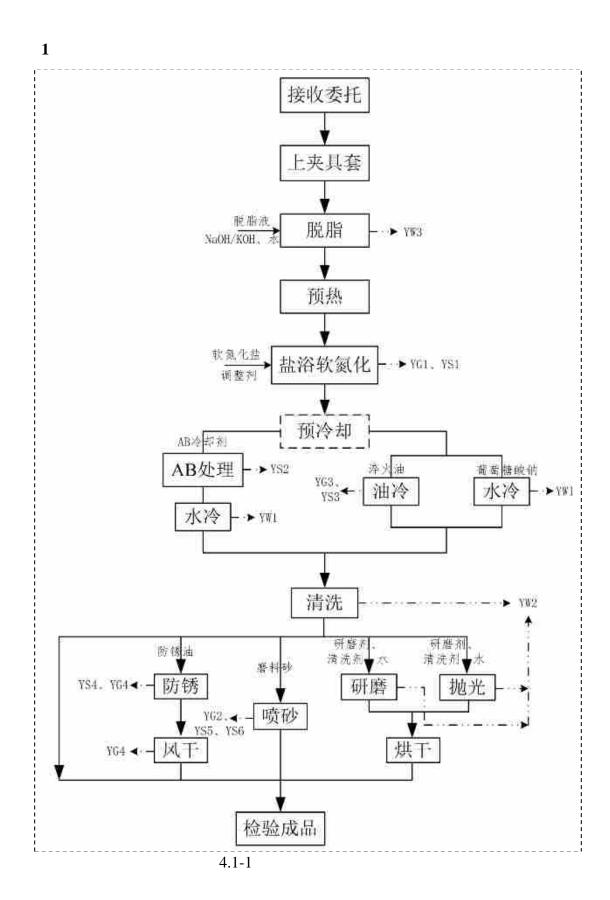
*

4.1-4

		1.1			
1			20L		300L
2	-1		20kg /50kg		2600kg
3	-2		20kg /50kg		17080kg
4	-1		20kg /50kg		6000kg
5	-2		50KG		500kg
6	-1		50KG		3800kg
7	-2		50KG		100kg
8	-3		50KG		500kg
9	-4		50KG		1000kg

10		20kg		1000kg
11		20kg		1000kg
12		20kg		100kg
13	-1	200L		200L
14	-2	200L		200L
15				1t
16		550kg/	/	1100kg

4.1-5


	1	1-3			
			1		
	CAS	590-28-3	KCNO 05 g/cm ³	81.11 g/mo.	1 75g/
	100g H ₂ O	R R22	S S 841mg/kg		LD ₅₀
			400mg/kg		
	CAS 550 ;	917-61-3	:NaCNO g/mL,20	65.0066 0/4) 1.89) (°C
	1500mg/kg	LD ₅₀ 26	LD _{Lo} 4mg/k 0mg/kg 500	kg LD	50
	70	0			
-1	~90% >40	>150	~7%	~3%	

		/		
-2	~90% >40 >150	~10%		
-				pH~12.5
-	30% pH	5% ~9.0 100 ,	30%	35%
			-94.9 ,	56.5 ,
	NaOH (1663 K) 176-178°C	1.515g/mLat 20°C C 1,473-1,475	318 °C (591 K)	1388 °C
	7.2ml 4.2		1g 0.9ml	0.3ml
	40mg/k	2.13	318 139	0 25%
	360~406 n20/D1.421 1	H 56.11 1320~1324 mmHg 719	2.044g/cm ³	52°F
	0.1mol/L 1230mg/kg	pH 13.5		
	1%	LD50273mg 50mg 24	g/kg	
	H ₂ SO ₄ =1 1.83 0.13kPa/145.8 2140mg/kg	98.08 =1 LC50 510mg/m ³ 2	3.4 330	10.5 LD50
	;		;	
		:		

4.1.2

/ + 250~350

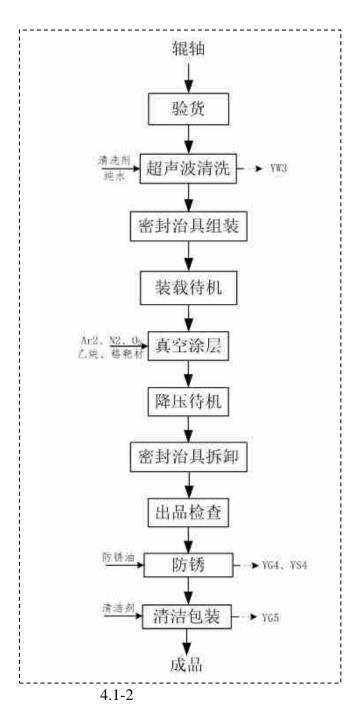
C N

580~600

30~180 -C- -N-

Na K $4NaCNO = 2Na2O+O2 +2C^{4+} +2N^{3-} +2CN^{-}$

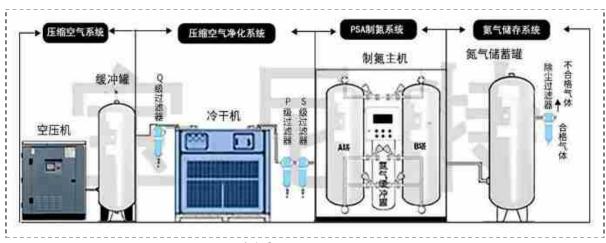
10min


AB AB AB

и

-

-

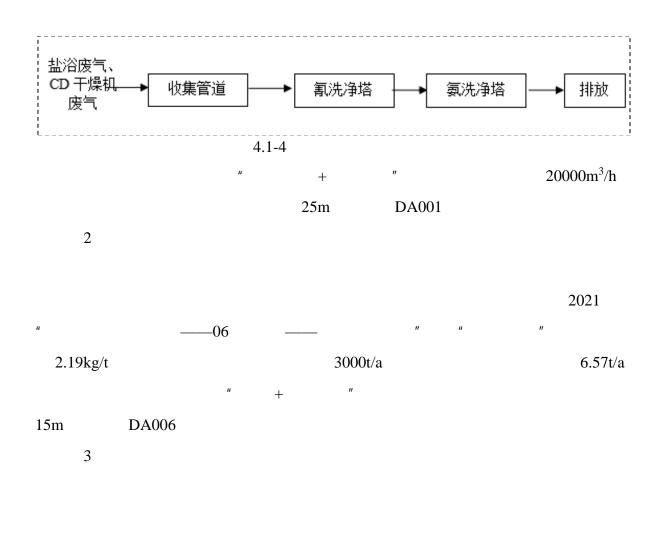

4.1-6

1		-
2	100:6	

3				-		
4				-		
5		DLC	DLC	-		
6				-		
7				-		
8				-		
9						
10						
3						

PSA

4.1-3


4.1.3

4.1-7 2024.9

		YG1				
		YG2				
		YG3			VOCs	NMHC
		YG4		VOCs	NMHC	
		YG5		VOCs	NMHC	
		YG6				
		YW1		$\mathrm{COD}_{\mathrm{Cr}}$		SS
		YW2		$\mathrm{COD}_{\mathrm{Cr}}$		SS
		YW3		p.	Н	SS
		YW4		pH COI	O _{Cr}	SS
		YW5				
		YS1				
	AB	YS2	AB		AB	
		YS3				
		YS4				
		YS5				
		YS6				
		YS7				
		YS8				
		YS9				

 $\begin{array}{cccc} CO_2 & N_2 \\ & HCN & NH_3 & O_2 \end{array}$

12t/a

" + "

 $5000 \text{m}^3/\text{h}$ 90%

15m DA007

MSDS >150

5%

1t/a 0.05t/a

GB37822-2019

5

100L/a

0.08t/a GB37822-2019

6

AB

4

10% 15m DA008

1

GB8978-1996

2

2 4 /

4.1-5

影合环保

CD

6t/d 4.1-5

60%

5

5.2t/d

3

" 1500t/a

80% 1200t/a

4

 $1.4m^3 \quad 3.5m^3 \qquad \qquad 2 \quad /$

306t/a

pH SS

2 100L =100:6

2 1 /10 80%

4t/a SS

310t/a

" + " 20t/h 15t/h

5t/h

3t/h

6

SS

AB

1

100kg/d 2 60t

2 AB
AB
AB

AB 200kg/d

1 AB 60t

30% 15t/a

4

20%

1.05t/a 0.21t/a 5

5.85t/a

6

2.4t/a 90%

2.2t/a

7

2t/a

8

25:1 4% 1546t/a 61.8t/a

9

0.5t/a

4.1-8


1				- HW17 336-064-17
2	AB	AB	AB	HW17 336-064-17
3				HW08 900-203-08
4				HW08 900-216-08
5				SW17 900-099-S17
6				SW17 900-099-S17
7				HW49 900-041-49
8				HW17 336-064-17
9				SW59 900-009-S59

GB7665-2001

4.2-1 4.2-1

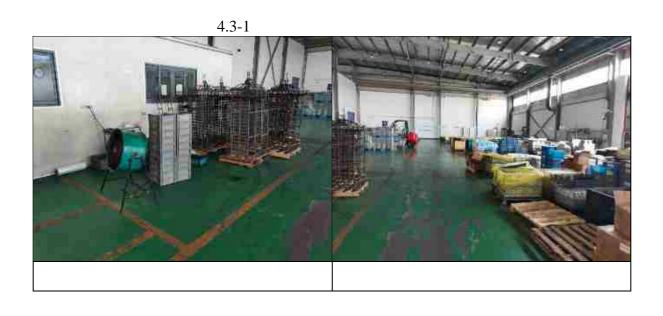
4.2-1

4.2-1

	m ²
1	4756
2	210
3	175
4	100
5	60

4.3.1

1

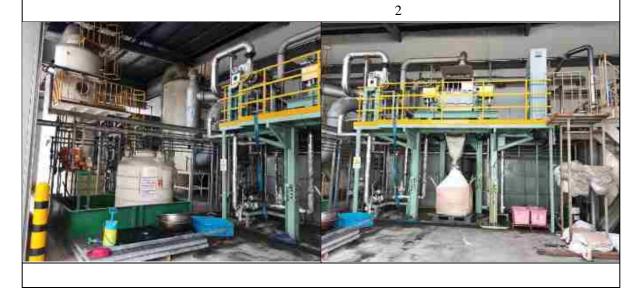

2

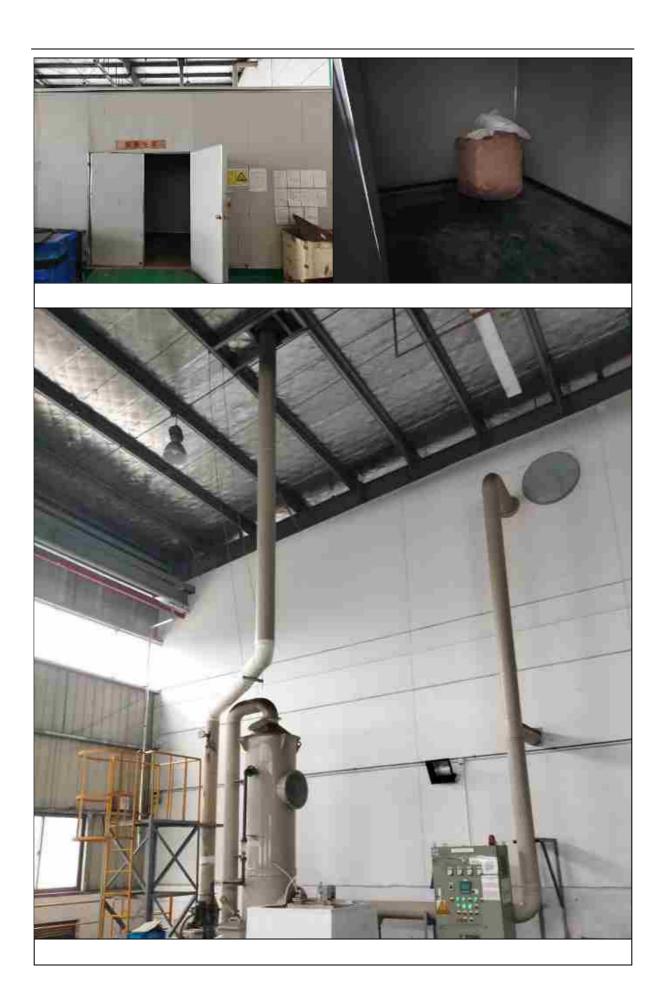
3

4

5

4.3.2





1

AB

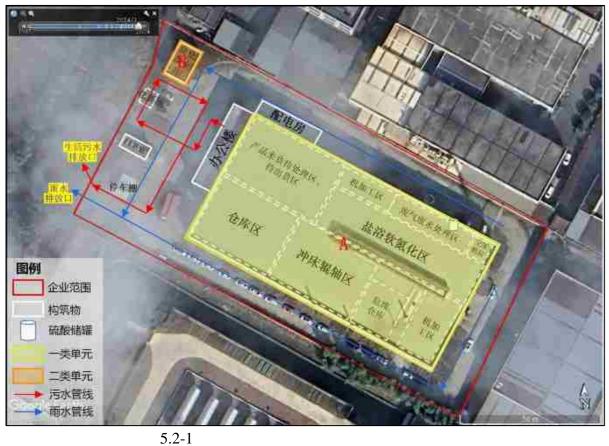
CD

и п

4.3-2

		4.5-2	
	1		
1			
2			
3			$\mathrm{COD}_{\mathrm{Cr}}$
4			/
5			
6			$\mathrm{COD}_{\mathrm{Cr}}$
7			
8			/
9			

5.1


5.2 /

 6400 m^2

5.2-1

5.2 1

					C336	
	/					/
A 4756m ²	m^2		COD _{Cr}	120.013841°, 30.681087°		
			COD _{Cr}			
B 100m ²				120.014396°, 30.680508°		

HJ 1209-2021

1

2

3

4

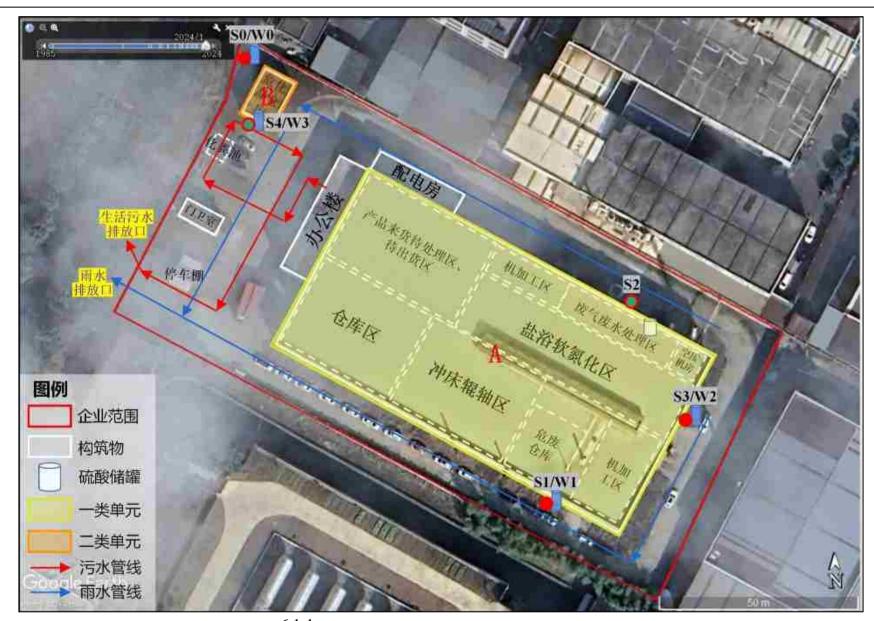
5 F HJ 164

 COD_{Cr}

6.1 /

НЈ 1209-2021

HJ 610 HJ 964


1 HJ 164

4 2
2 3

10%

10%

6.1-1

6.1-1

6.2-1

6.2-1

			٥	٥
	S1/W1	/	119.999081	30.902723
4756m ²	S2		119.999249	30.903172
	S3/W2	/	119.999400	30.902905
100m ²	S4/W3	/	119.998255	30.903614
/	S0/W0	/	119.998269	30.903747

6.3

GB36600-2018

GB/T 14848-2017

a

1 HJ 1209-2021

GB 36600 1

GB/T 14848 1

2

 COD_{Cr}

6.3-1

6.3-1

1	8	$\mathrm{COD}_{\mathrm{Cr}}$
2	9	
3	10	
4	11	
5	12	
6	13	
7	14	

6.3-2

6.3-2

6.3-2							
1		pН					/
2		pН					/
3		pН					/
3							/
4							/
5		/					/
6		/					/
7	$\mathrm{COD}_{\mathrm{Cr}}$	/					/
8		/					/
9		/					/
10		/					/
11		/					/
12		/					/
13							/
13							/
14		/					/

6.3-3

	0.5 5	
	1 pH 45	
S 1	a	
	рН	
	b	
S2	1,1- 1,2- 1,1-	
	-1,2- 1,1,1,2-	
	1,1,2,2-	
S3	1,2,3-	
	+	
	c	
S4	2- [a] [a] [b] [k]	
	[a,h]	
	2	
S0	C_{10} - C_{40}	
	1	
W1	a	
	pH CaCO ₃	
WO		
W2	$\mathrm{COD}_{\mathrm{Mn}}$ O_2	
	- N	
W3	b	
W S	N N	
	-	
W0	2	
****	C_{10} - C_{40}	
****	C ₁₀ -C ₄₀	

b

1

GB 36600

GB/T 14848

c 2025

6.3-3

S0~S4	рН	C ₁₀ -C ₄₀	
W0~W1	рН	C ₁₀ -C ₄₀	

6.4

a

6.4-1

	6.4-1		
		S2 S4	1
		S0 S1 S3	3
		W1 W2	
		W0 W3	
1			
2			

b

1

2

7.7.1

7.1.1A
0~0.5 m

20m

В

50m

7.1.2

HJ 164 7.51

8.36m -1 -2 1.0 2.0m 4.0m

НJ164

7.1-1

7.1-1

		/·1 ⁻ 1
S1	1 0-0.5m	
	2 2.0-2.5 m	50cm
	3 3.0- 4.0m	
S2	1 0-0.5m	
S3	1 0-0.5m	
	2 2.0-2.5 m	50cm
	3 3.0- 4.0m	
S4	1 0-0.5m	
SO	1 0-0.5m	
	2 2.0-2.5 m	50cm
	3 3.0- 4.0m	
W1		
W2		
W3		
W0		
11/1 11/2		

W1 W3

11+2 4+1 2+1

7.2

7.2.1

7.2-1

1

7 pH

7.2-1

1.2-1		
GEOPROBE GP	1	
GPS	1	
RTK	1	
	3	
	7	
	2	
	7	
	7	
5.0kg 0.1g	1	
	1	
	2	

	10	
	4	
	1	
	1	
	4	
	4	
рН	1	
	1	
	1	
PDA	1	
	1	
	2	
	2	
	3	
	2	
	1	
	1	

7.2.2

7.2.3.1

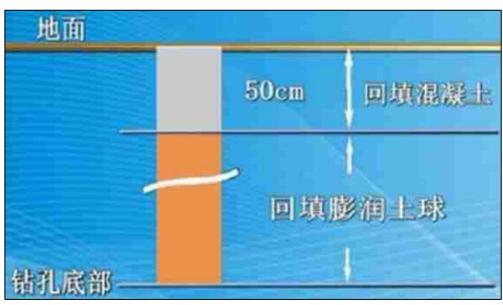
HW-180

HW-180

HW-180

1 VOCs

2


3 80%

90% 80% 4 QY-100L QY-100L VOCS 90~100% 85~90% 20 7.2.3.2 1 2 3 50cm~150cm 70% 85% 65% 50% 40% 4 1 +E S W N

1

5

50cm 20-40mm

7.2-1

6 RTK

7

8

50 cm

20 mm~40 mm

24 h

7.2.3

1

VOC

VOCs

1 cm~2 cm VOCs

SVOCs

2 10%

3 VOCs SVOCs

4

5

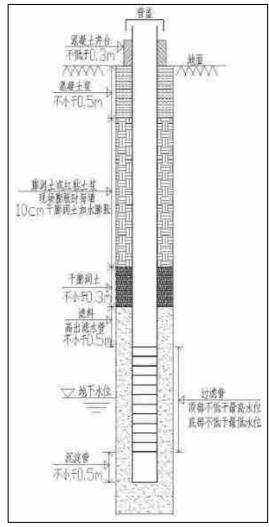
a

b

c

a ,

0.5m b


c d 4

7.2.4

7.2.4.1HW-180 **7.2.4.2**

7.2-2

7.2.4.2 GPS

7.2-2

50mm

PVC PVC

LNAPL

3m

DNAPL

0.2mm~0.5mm 90%

50cm 3m

1 50 cm

1 mm~2 mm

2

50 cm 20

mm~40 mm 30 cm

50 cm

3

5%~10%

1 HW-180

50mm 2h-

3h 2

3

30cm 10cm 5 30cm~50cm 30 cm 6 24h 3.8L/min pН $\pm 10\%$ 50 NTU 7 7.2.4.3 48h 1 2

5

pН

3

pН

ORP ±0.1 pН ±3% ORP $\pm 10 mV$ 3-5 5 4 7.2.4.4 1 2 24cm 30cm 10cm 50cm 50cm 100 cm 15cm 3 7.2.4.5 7.2.4.6 1 2 7.2.5 7.2.5.1 1 2 3 4 2 1 m 15min

5 7.2.5.2 1 a b c d 2 a b c d

1

e

f

7.2.6

10cm

2h

1

2 2h

a
b
30-60cm 3cm

c
0.5m 3m

d
e
14d
f

НЈ 164-2020

2

3

0.45 μm

7.3.1

HJ/T 166-2004

HJ 164-2020 GB/T 14848-2017

7.3.2

1

2

3

n u n

8.1

CMA

8.1-1

		0.1 1		
				mg/kg
1	рН	рН НЈ 962-2018	/	/
2		НЈ 491-2019	1mg/kg	18000
3		GB/T 17141- 1997	0.1mg/kg	800
4		GB/T 17141- 1997	0.01mg/kg	65
5		НЈ 491-2019	3mg/kg	900
6		- НЈ 1082-2019	0.5mg/kg	5.7
7		2 GB/T 22105.2-2008	0.01mg/kg	60
8		1 GB/T 22105.1-2008	0.002mg/kg	38
9			1.0µg/kg	37
10			1.0µg/kg	0.43
11	1,1-		1.0µg/kg	66
12			1.5µg/kg	616
13	1,2-		1.4µg/kg	54
14	1,1-	/ - HJ	1.2µg/kg	5
15	1,2-	605-2011	1.3µg/kg	596
16			1.3µg/kg	0.9
17	1,1,1-		1.3µg/kg	840
18			1.3µg/kg	2.8
19			1.3µg/kg	4

				mg/kg
20	1,2-		0.4µg/kg	5
21			1.2µg/kg	2.8
22	1,2-		1.1µg/kg	5
23			1.3µg/kg	1200
24	1,1,2-		1.2µg/kg	2.8
25	1,1,2		1.4µg/kg	53
26			1.2µg/kg	270
27	1,1,1,2-		1.2µg/kg	10
28			1.2µg/kg	28
29	-		1.2µg/kg	570
30	-		1.2µg/kg	640
31			1.1µg/kg	1290
32	1,1,2,2-		1.2µg/kg	6.8
33	1,2,3-		1.2µg/kg	0.5
34	1,4-		1.5µg/kg	20
35	1,2-		1.5μg/kg	560
36	1,2		0.09mg/kg	76
37			0.09mg/kg	70
38	2-		0.09mg/kg 0.06mg/kg	2256
39	[1,2,3-cd]		0.1mg/kg	15
40	[a,h]	- НЈ 834-	0.05mg/kg	1.5
41	[a]	2017	0.1mg/kg	15
42	[4]	2017	0.1mg/kg	1293
43	[b]		0.2mg/kg	15
44	[k]		0.2mg/kg 0.1mg/kg	151
45	[a]		0.1mg/kg 0.1mg/kg	1.5
46	[a]	CD 5005 2 2007 V	0.1mg/kg	260
		GB 5085.3-2007 K		
47		(2017 1625)	2 mg/kg	10000
48		НЈ 491-2019	4 mg/kg	10000
49		НЈ 745-2015	0.01mg/kg	135
50		НЈ 873- 2017	63mg/kg	10000
51	(C ₁₀ -	(C ₁₀ -C ₄₀ HJ1021-2019	6 mg/kg	4500
		DB33.	/T 892-2022	A

8.2-1

				GB/T 14848-2017
	ш	н и	" mg/L	
1	рН	рН НЈ 1147-2020	/	5.5 pH 6.5, 8.5 pH 9.0
2			0.08µg/L	1.50
3			0.09µg/L	0.10
4			0.05µg/L	0.01
5			0.67µg/L	5.00
6		65	0.41µg/L	0.1
7		НЈ 700-2014	0.12μg/L	0.05
8			0.82µg/L	2.0
9			0.12μg/L	1.50
10			1.15µg/L	0.50
11			0.00636mg /L	400
12		НЈ 694-2014	0.04µg/L	0.002
13		17 DZ/T 0064.17- 2021	0.004mg/L	0.10
14		4 - DZ/T 0064.4-2021	/	25
15		GB/T5750.4-2006	/	
16		GB/T5750.4-2006	/	
17		GB/T 11892-1989	0.5mg/L	10.0
18		НЈ 1075-2019	0.3NTU	10
19		DZ/T 0064.9-2021	4mg/L	2000

				GB/T 14848-2017
20		4- HJ 503-2009	0.0003mg/ L	0.01
21		GB/T5750.4-2006	0.100mg/L	0.3
22		НЈ 535-2009	0.025mg/L	1.50
23		GB/T 16489-1996	0.005mg/L	0.10
24		52 - DZ/T 0064.52- 2021	0.002mg/L	0.1
25		GB/T 5750.5-2006	0.05mg/L	0.50
26		EDTA GB/T 7477-1987	5mg/L	650
27			0.018mg/L	350
28		F- Cl-	0.007mg/L	350
29		NO ₂ - Br- NO ₃ - PO4 ₃ - SO3 ₂ - SO4 ₂ -) HJ 84-	0.005mg/L	4.80
30		2016	0.004mg/L	30.0
31			0.006mg/L	2.0
		ug/L		
32			1.4µg/L	300
33			1.2μg/L	50.0
34		/ - HJ 639-2012	1.4µg/L	120
35			1.4µg/L	1400
	l	mg/L		
36	(C ₁₀ - C ₄₀)	(C ₁₀ -C ₄₀) HJ 894-2017	0.01mg/L	1.20
37		НЈ 669-2013	0.007mg/L	/
38		НЈ 757-2015	0.03 mg/L	0.10
39		65 НЈ 700-2014	0.06µg/L	0.10
HQ=1	1.0	RSLs 2024.5		TR=1E-06

8.3.1

5

1 pH

C10-C40

8.3-1

8.3-1

2025-09-25				
S 1	S2	S3	S4	S0
251807 G-1-1-1	251807 G-1-2-1	251807 G-1-3-1	251807 G-1-4-1	251807 G-1-5-1
0-0.2	0-0.2	0-0.2	0-0.2	0-0.2
6.96	6.92	6.90	7.03	6.87
18	27	26	15	14
18	24	22	13	16
91	139	73	88	85
75	159	125	53	58
0.5	0.5	0.5	0.5	0.5
423	506	479	454	451
10	56	26	12	13
0.04	0.04	0.04	0.04	0.04
	251807 G-1-1-1 0-0.2 6.96 18 18 91 75 0.5 423	251807 G-1-1-1 251807 G-1-2-1 0-0.2	S1 S2 S3 251807 G-1-1-1 251807 G-1-2-1 251807 G-1-3-1 0-0.2 0-0.2 0-0.2 6.96 6.92 6.90 18 27 26 18 24 22 91 139 73 75 159 125 0.5 0.5 0.5 423 506 479 10 56 26	S1 S2 S3 S4 251807 G-1-1-1 251807 G-1-2-1 251807 G-1-3-1 251807 G-1-4-1 0-0.2 0-0.2 0-0.2 0-0.2 6.96 6.92 6.90 7.03 18 27 26 15 18 24 22 13 91 139 73 88 75 159 125 53 0.5 0.5 0.5 0.5 423 506 479 454 10 56 26 12

8.3.2

5

1 pH

4

C10-C40

8.3-2

8.3-2 1

	2025-09-25			
/	S1 W1	S2 W2		
	251807 S-1-1-1	251807 S-1-2-1		
pH	7.3	7.2		
mg/L	0.315	0.784		
mg/L	0.007	0.007		

	2025-09-25		
/	S1 W1	S2 W2	
	251807 S-1-1-1	251807 S-1-2-1	
mg/L	0.050	0.050	
SO ₄ ²⁻ mg/L	112	115	
mg/L	0.28	0.56	
mg/L	0.03	0.03	
mg/L	0.94	1.38	
mg/L	0.02	0.02	
mg/L	0.02	0.02	
mg/L	0.004	0.004	
mg/L	0.002	0.002	
C ₁₀ -C ₄₀ mg/L	0.07	0.04	
mg/L	0.0184	3.01× 10 ⁻³	
mg/L	2.4	2.9	

8.3-2 2

	0.3-2 2			
	2025-04-21			
/	S1 W1	S2 W2	S3 W3	S4 W0
	250853 S-1-1-1	250853 S-1-2-1	250853 S-1-3-1	250853 S-1-4-1
pH	7.3	7.2	7.6	7.7
N mg/L	0.892	1.40	1.26	1.30
PO ₄ ³⁻ mg/L	0.007	0.007	0.007	0.007
mg/L	0.050	0.050	0.050	0.050
SO ₄ ² - mg/L	73.0	65.6	45.0	70.5
F- mg/L	0.42	0.29	0.98	1.46
mg/L	0.03	0.03	0.03	0.03
mg/L	1.09	1.19	1.15	1.13
mg/L	0.02	0.02	0.02	0.02
mg/L	0.02	0.02	0.02	0.02
$\begin{array}{ccc} & & & C_{10}\text{-} \\ & & C_{40} & & mg/L \end{array}$	0.02	0.01	0.05	0.01
mg/L	0.0455	2.18× 10 ⁻³	5.80× 10 ⁻³	0.0206
mg/L	0.004	0.004	0.004	0.004
mg/L	0.002	0.002	0.002	0.002
mg/L	3.6	3.8	3.7	4.8

8.4.1

8.3-1

1 pH

pH 6.87~7.03

2

C10-C40

GB36600-2018

DB33/T 892-2022

5

C10-C40

GB36600-2018

8.4.2

8.3-2

1

2

3

C10-C40

8.4.3

8.3-2

	2025	2024	30%	30%
рН	7.2~7.7	6.8~7.0	-	-

	2025	2024	30%	30%
N mg/L	0.315~1.4	0.281~1.03		-
PO ₄ ³⁻ mg/L	ND	ND		-
mg/L	ND	ND~0.4		-
SO ₄ ²⁻ mg/L	45~115	31.6~88.7		-
F- mg/L	0.28~1.46	0.388~0.522		W0
mg/L	ND	0.36~0.42		-
mg/L	0.94~1.38	0.35~7.97		-
mg/L	ND	ND~0.08		-
mg/L	ND	ND~13		-
$\begin{array}{cc} & C_{10}\text{-} \\ C_{40} & mg/L \end{array}$	ND~0.07	0.13~0.26		-
mg/L	0.00218~0.0455	0.0045~0.313		-
mg/L	ND	ND		-
mg/L	ND	ND		-
mg/L	2.4~4.8	1.7~3.8		W0 W1 W3

8.3-2 W0 W0 W1 W3 30%

9.1

CMA

HJ/T 166-2004

HJ 164-2020

HJ 25.2-2019

9.2

HJ 25.1-2019

HJ 25.2-2019 (

) HJ 1209-2021

9.2-1

	7.2 1
	2024.10.10
S1/W1	

	2024.10.10
S2	
S3/W2	
S4/W3	

	2024.10.10
S0/W0	の
	属建琴 2024.10.10

9.3.1

1

2 3

4 RTK

5 6 9.3.2

1 2

2

10%

VOCs

9.3.3

9.3.6

9.3.6.1

20 1

9.3.6.21

98%

2 5

R 0.990

20

20%

9.3.6.35%

20 1 RD

95% 95%

5%~15%

9.3.6.41

100%

2

5% 20

100%

10.1

2025

(GB36600-2018)

2025 (GB/T

14848-2017)

2024 2025 WO

WO W1 W3 30%

3 6.4

							C	336	
		2025.1	2025.10.24					1775	7259821
	/							/	
									S1 119.999081°, 30.902723°
						_			S2 119.999324°, 30.902776°
A 4756m ²					COD_{Cr}	120.013841°, 30.681087°			S3 119.999166°, 30.903213°
						_			W1 119.999081°, 30.902723°
					COD _{Cr}	-			W2 119.999166°, 30.903213°
B 100m ²						120.014396°, 30.680508°			S4 119.998255°, 30.903614°

					W3 119.998255°, 30.903614°
					30.903614°

人员访谈记录表

地块编号	
地块名称	并注始卡拉处理科技有限公司
访摄人员	姓名: 王龙岭 单位: j切州外参讨谷州 龙龙区一司 联系电话: 17757259831
受坊人员	受访对象类型。 口土地使用者 区企业管理人员 口企业员工 口政府管理人员 口环堡部门管理人员 口地块用边区域工作人员或居民 姓名, 展记号 经边人员签字: 居建琴 单位: 浙江州社社人记许赵东区门 职务或职称: 从第二 联系电话: 18768276879
	1. 本地块历史上是否有其他工业企业存在? 口是 正 卷 若沈是。企业名称是什么? 起止时间是 年至 年 2. 本地域内目前机工人数多少7 (仅针对在产企业提问)
访谈问题	3 本地块内是否有任何正规或非正规的工业固体废物堆放场? □在规 □非正模 □无 □不确定 在选是,堆放场在哪? 【注注字间内的处】 堆近什么废物? 【论格度】中,能量反复型,ABC。按例、设备的反应:
	4. 本地块内是否有工业废水排放沟渠或涉坑? 口是 D 口不确定 若选是。排放沟渠的材料是什么?

	5. 本地拱内是否有产品、原轴材料、抽品的	地下储器	直或地下等	心送管道?				
		口是	DE	口本确定				
	若选是。是否发生过泄漏? □是(发生过	(%	口香	口不确定				
	6 本地块内是否有工业废水的地下输送管道和	政债存的	2					
		回角	口音	口不磷氧				
	若逃是。是否发生过泄漏? 口是(发生过	80		口不确定				
	7. 本地块内是否要发生过化学品推编事故?	或是否	发生过其	他环境污染				
	事故? 口是《发生过	35.7	以香	口不确定				
	本地统刑边等近地块是否曾发生过化学品====	具事以で	或是否以	生过其他羽				
	境污染事故? 口是(发生戏	次3	口香	30不确定				
	8. 是百有废气排放?	口龙	口香	口不确定				
	是否有废气在线监测装置?	口是	0名	口不确定				
	是否有废气治理设施?	延	口香	口不确定				
	9. 是否有工业版水产生2	DA	口香	口不确定				
访读问题	是否有废水在线监测装置?	以是	미참	口不确定				
	是否有废水治理设施?	之是	口含	口不确定				
	10. 本地块沟是否整两到过由土壤散发的异常气味?							
		口是		赵 不确定				
	11. 本地块内危险废物是否曾自行利用处置?	口是	DA.	口不确定				
	12. 本地块内是否有遗留的危险废物单故?(仪针对关	使用企业	是问》				
		口是	口香	口不确定				
	13. 本地块内土壤是否曾受到过污染?	□是	口香	口不确定				
	14. 木地块内地下水是香普受到过污染?	口是	11) (2)	0.不确定				
	15. 本地块居边 1km 范围内是否有幼儿园、学	楼、居!	起、医	院、自然保				
	护区、农田、集中式饮用水水漏塘、饮用水井	。地表办	。萨蒂勒	5月地7				
l l		包包	2.5	日本确定				
	若逃薨,敏感用地类型是什么?距离有多远?	民胚	E.					
	若有农田,种桔农作物种类是什么?							

	16. 本地块周边 1km 范围内是否有水井? □是 □否 □3/46 若逃是。请描述水井的位置
	距离有多远 ! 水井的用途!
	是否发生过水体浑独、颜色或气味异常等现象? 口是 口杏 口不确; 是否观察到水体中有油状物质!
	17. 本区域地下水用途是什么? 周边地表水用途是什么?
	18. 本企业地块内是否曾开展过土壤环境调查监测工作? □是 \$26 □不编
访谈何趣	是否會开展过地下水环境消查监测工作? 口是 口舌 口不確
	是否并展过场地环境调查评估工作?
	口是 (口正在开展 口已经完成) 四名 口不确

专家函审意见

方案名称	浙江帕卡热处理科技有限公司土壤和地下水自行监测方案						
专家姓名	日本燕	取称	教授	单位名称	潮州师范学院		

湖州聚合环保科技有限公司编制的《浙江柏卡热处理科技有限公司土壤和地下水自 行监测方案》 方案基本符合《工业企业土壤和地下水自行监测技术指南(试行)》 (HJ1209-2021) 等国家及浙江省相关技术等则和规范的要求、内容总体完整、方案基本可行、经修改完善后可作为下一步工作的依据:

- 1. 完善项目背景; 准确描述企业生产情况, 完善企业历史相关环境调查结果;
- 2 结合地势地航及周边地块地勘资料等,细化土层特征、分析隔水层分布,完善本地块 (而不是该区域) 地下水湖向及分析、为后续市点提供依据;
- 3. 结合生产工艺、原制材料化学成分及其理化性质等,细化土壤、地下水关注污染物分析筛选和确定过程,校核现有监测因子合理性等;结合 HD164 规定,进一步明确初次监测因子,完善关注污染物及后续监测因子;
- 4. 完善原輔材料储存形式和厂区总平布置,绘合重点单元与设施识别,按照导则模板要求,补充重点监测单元清单,校核监测单元划分,明辅重点单位类型和面积,优化其投置理由;结合各区域面积、污染因子和相对位置等,完善布点依据和数量说明(单元划分和点位布设以厂区功能因为背景;对照点尽量设置在厂区内或附近);建议土壤深层采样点位布设于一类单元地下水下游位置;
- 5 优化土壤采释深度设定。明确地下构筑场分布及深度,为华元划分提供依据;根语地下构筑物埋深,明确各一类单元采释深度,分别完善其理由(如建议采样深度在最大框深15米以下);补充土壤分层筛选与选样原则;
- 6 按照相关技术指南外充监照方案变更、监测结果分析相关要求;完善现场采样、保存、运输、预处理、检测等全流程的质量保证和质量控制等要求,细化采样检测等安全作业相关要求;完善相关附图附件。

专家签名: しなち

2024年10月29日

浙江帕卡热处理科技有限公司土壤和地下水自行监测方案 专家函审意见

项目名称

浙江帕卡热处理科技有限公司土壤和地下水 自行监测方案

总体意见:

湖州聚合环保科技有限公司编制的《浙江帕卡热处理科技有限公司土壤和地下水自行监测方案》编制基本规范,总体符合国家和浙江省相关规范要求,方案基本可行,经修改完善后可作为下一步工作的依据。

建 议:

- 结合历史卫星影像图,进一步完善补充公司所处区域地块周边历史用地情况分析;
- 通过资料收集和人员访谈,完善补充不同废水处理的工艺流程,所用原料辅料等,细化特征污染因子的识别和筛选;
- 3.结合地勘报告和水位高程,完善补充地下水流向分析;完善补充对照点布设的合理性说明;
- 4.结合公司厂区平面图和生产功能区划,完善补充厂区污染单元分区依据和合理性说明;
- 5.结合污染单元分区和地下构筑物,进一步完善土壤和地下水 监测布点、土壤钻孔深度的合理性分析;
- 6.完善土壤和地下水等采样、存储、运输、流转、实验室分析测试等全过程的质控内容和要求。

专家签名: 70 电引 考

2024年10月29日

浙江帕卡热处理科技有限公司土壤和地下水自行监测方案 函审意见

受委托,对《浙江帕卡热处理科技有限公司土壤和地下水自行监测方案》进 行诱审,经认真审阅,提出诱审意见如下:

一、总体评价

方案基本符合《工业企业土壤和地下水自行监测 技术指南(试行)》(HJ1209-2021) 等国家及浙江省相关技术导则和规范的要求, 内容较完整, 方案总体 可行,原则通过评审; 方案经修改完善后可作为下一步工作的依据。

二、主要修改完善意见

- 1、核实企业红线图及拐点坐标:核实地下水流向;完善企业生产情况调查, 完善污水管线、涉水(液体)生产设备架空情况及生产区域防渗情况说明,核实 厂区内地下水构筑物数量、深度等信息;完善厂区平面布置图。
- 2、细化重点设施、设备识别及重点监测单元划分,说明各单元面积;优化监测点布设,完善关注污染物筛选;校核初次及后续监测因子的确定。
- 3、细化现场采样、保存、运输、预处理、检测等全流程的质量保证和质量控制等要求。

赶

2024年10月29日

浙江帕卡热处理科技有限公司土壤和地下水自行监测专家函审意见修改说明

備号	专家意见	修改说明	本 引
90	元告[3][[] 为版: 海滩描述企业生产情况。记者企业历史都共享互调 利诺度:	元香了用百香菜。如此了企业生产情况设法。 医养了全术历史师实 环查证者证明:	PI-2, P21-33 191-13
2	以自社会就经及对定组实租助资料等。但完于定转值、分析指水位 分型、共调本执法(此不是重定域)以下水谷的及分析。为证律用 主要保格器。	结合物外域制度到增生成构造资料等。相位了之堂特征。每时间中 度分布、光谱了本组块电下水流所及分析。	P17.20
Ÿ		热自加广工艺、原始特种化学教育及新研化性研节。他们工程。 地下水灰色的菜族加州特益即载定过程、投模了施存在部份产年时代等。或自 1016年 成立。进一步可能了机构趋重图子、工具工力 运气转档及互利能制性了。	P#8-50 ₇ P2+56
(b)	分。则连要点单位类型和信权、优化无投管提出。指令各区域而获。	立两了即纳州村特许历史制厂区众至年度。除台市水平市当成市市 级。初度与研院校型库、作业了重点出满年元前库,较终了出重外 运划分、明确了重点并仍类型和控制。仅仅了其效是更高,估许各	239-331
30	优化十年光年间定过之。则而他于特殊物分布及原度。为并元是分似仍然明,相使由于构筑物体。则统各一五名《安林报史》,为明允者并把由《知识公全学规度在是《理影》(《老坛下》)》《公土报台《郑松与这样参明》	用某种的 医二十二烷基基甲烷基基 用用的复数 。 用以使用于出现的复数形式或者 医结形的 (200号 用: ,从) 第二十二	PS8-30
ř		传照非关注未没南种充了你别方家少更、假集详明分析相关要求。 运力「现效保坏、固有运输、均处理、能制等全定型的领域保证制 场某种计算更多、如化了果籽依别等安全作业相关度水。完美了相 法性保护制。	P57. P28. P59.88

建步	专家產品	体支机电	索引		
7	结合历史卫星影像图。进一声实而补充公司所能区域地块别显历史 归近域是分析:	结合因生卫局新聞園。进一步也看整在了公司所是逐域地抽開加田 史用地質见存制。	pa-)1		
ß.	通过更和收集和人员的谁、亚普什克不同成本处理治工艺流布、所用应用领料等。组在特征对范围于治国其和原选。	通过更料收集和人品更快,更整补化了不同原水处理出了艺品等。 所用原料制料等。如化了特征均均到子供资料和报告。	P48-50		
90	然合地最极为和水位高程。 生态补充地下水线的分辨,更香林克对 组点和政治合理性溢明。	结合地游摄器和水仪高程。 贮存补充了地下水流向分析。 贮费料充 了对照点布设的台项性景明。	P17-201 P52-53		
$\widetilde{0}$	基合会司厂区平面图和生产功能区划。宝春新充厂区的杂单光分区 按新科合理性误判。	会司厂区平面開布生产功能区划。宣布特免厂区的集集系分区 结合会司厂区平面围布生产功能区划。宣集特分了厂区沿条单元分割合建作设划。			
Ħ	就自己重要完分区和地下的项籍。进一步完置土壤和地下水压制布点。 上學結准 22個的会理性分析。	估价的确单元分区和维下特和物。进一步完置了土壤和维下水量的 很多。1.填稿有深度的合理性分析。			
12	克男士雄和排下水學素幹。在韓、宣師、面較、克勒斯分析對試等 全过程的排的内容科更求。	· 岁香了上墙相照下水等更样。在他、压燥、抗转、功能率分析测试 等等过程的或作为容易更求。			
13	据实产业组建度及担点业标。相求地下水流向。在产企业生产情况。核生了企业线图及担益业标。核实了地下水流向。而含了企业生的也,实现与水管地、切水、进外、生产设备生空情况及生产区域产情况则也、定差、均水管线、近水(现外)。生产各种空情况及助体情况规则、技术工厂以内地下水均以物类量。译度等任意,完全工厂以下则有管理。				
(ä		加化了重点效理。设备识别改重应监测单元经验。说明了各中元加 积、保化了表明点布理,宣考了支柱设验物理域。模格了和次是有 似度则因了的确定。			
13	制於原廷者称。保存、压鍊、预处理、检测等今级特的原管保证和 基重的制等资本。	制化工规场支持、双存、三等、现处性、检查等全面程则是证保证 和效量处例等要求。	P50/45		

(6) 报告规号: HJ250853

第1页共5页

检验检测报告

报告编号: HJ250853

项目名称

浙江帕卡热处理科技有限公司 2025 年 4 月地下水自行 检测

委托单位

浙江帕卡热处理科技有限公司

检测声明

- 1、本报告无本公司检验检测专用章及骑缝章均无效。
- 未经本公司书面允许,本报告不得部分复印,本报告经部分复印,未加盖本公司检验 检测专用章无效。
- 3、本报告内容需填写齐全,无本公司审核人、批准人签名无效。
- 4、本报告内容需填写清楚,经涂改、增删均无效。
- 5、本报告未经本公司书面同意,不得用于广告、商品宣传等商业行为。
- 6、本报告仅对本次采样样品的检测结果负责。
- 7、委托方若对本报告有异议,请于收到报告之日起15天内向本公司联系。

机构通讯资料:

地址: 浙江省湖州市红丰路 1366 号 6 幢 12 层 1206-1210 邮编: 313000

电话: 0572-2619111 传真: 0572-2612266

阿址: www.zyjchz.com.cn Email: hzzy@zynb.com.cn

	检 测	说明		
受檢单位	浙江帕卡施处理科技有限公司	采样地址	浙江省湖州市黄芝山路 518号	
委托单位	務江帕卡熱处理科技有限公司	浙江省湖州市黄芝山路 518 号		
联系人/联系方式	居理琴/18768276879	FA250853		
样品类别	地下水	委托检测		
采样日期	2025-04-21	2025-04-21-2025-04-29		
检测地址	浙江省湖州市红丰路 1366 号 6 億 浙江省湖州市黄芝山路 518 号	业12居1206-1210		
采样方法	地下水环境监测技术规范 HJ 16	4-2020		
检测项目	检测依据		主要分析仪器设备及型号	
pH 催	水质 pH 值的测定 电极法 HJ I	147-2020	便携式电化学仪表 SX836	
製飯	水质 氨氨的测定 纳氏试剂分为 HJ 535-2009	可见分光光度计 722S		
阴离子表面矫性剂	水质 副离子表面活性剂的测定 度法 GB/T 7494-1987	可见分光光度计 N2		
硫酸根(SO _z ≥)	水质 无机阴离子 (F、CI、NO POさ、SOさ、SOさ) 的製定 書 HJ 84-2016	离子色谱仪 PIC-10		
磷酸盐	水质 磷酸盐的测定 离子色谱法 HJ 669-2013		离子色谱仪 PIC-10	
氰化物	水质 氟化物的测定 离子选择电 GB/T 7484-1987	提法	离子计 PXSJ-216F	
铬	水质 铬的测定 火焰原子吸收 757-2015	分光光度法 HJ	原子吸收分光光度计 TAS-990F	
锰	水质 铁、锰的测定 火焰罩子。 GB/T 11911-1989	及 牧分光光度法	原子吸收分光光度计 TAS-990F	
98	水质 铜、锌、铅、铝的测定 》 度法 GB/T 7475-1987	非子吸收分光光	原子吸收分光光度计 TAS-990F	
98	水画 钢、锌、铅、镉的测定 原 度法 GB/T 7475-1987	子吸收分光光	原于吸收分充光度计 TAS-990F	
可萃取性石油烃 (Cm-Cm) *	水质 可萃取性石油烃(Cto-Can 色谱法 HJ 894-2017) 的测定 气相	代相色谱仪	
€0. *	水須 65 种元素的测定 电感耦合 法 HJ 700-2014	冷等离子体质谱	三重四极杆串級电感耦合等离子的 质谱仪	

检测项目	检测依据	主要分析仪器设备及型列
六价格*	地下水质分析方法 第17部分;总格和六价铬 量的测定 二苯磺酰二肼分光光度法 DZ/T 0064.17-2021	可见分光光度计
氰化物*	地下水质分析方法 第 52 部分。氰化物的测定 吡啶-吡唑啉酮分光光度法 DZ/T 0064.52-2021	可见分充光度计

检测结果

表1 地下水检测结果

深样时间		2025-	04-21	
检测点号/点位	S1 W1	S2 W2	S3 W3	\$4 W0
样品编号	250853 S-1-1-1	250853 S-1-2-1	250853 S-1-3-1	250853 S-1-4-1
样品性状	水样微浑,没黄色	水拌微浑。浅黄色	水样撒浑。浅黄色	水样做浑,浅黄色
pH 值(无量纲)	7.3	7.2	7.6	7.7
凱銀 (以 N 计) (mg/L)	0.892	1.40	1.26	1.30
消費盐(以 PO♪计)(mg/L)	< 0.007	< 0.007	< 0.007	< 0.007
阴离子表面活性剂(mg/L)	<0.050	< 0.050	< 0.050	<0.050
硫酸根(SO4 ²)(mg/L)	73.0	65.6	45.0	70.5
紙化物(以下计)(mg/L)	0.42	0.29	0.98	1.46
铬 (mg/L)	< 0.03	< 0.03	< 0.03	< 0.03
Œ (mg/L)	1.09	1.19	1.15	1.13
钢 (mg/L)	<0.02	<0.02	< 0.02	< 0.02
件(mg/L)	< 0.02	< 0.02	<0.02	< 0.02
可萃取性石油烃 (C ₁₀ -C ₄₀) *(mg/L)	0.02	10.0>	0.05	<0.01
襚* (mg/L)	0.0455	2.18×10 ⁻³	5.80×10 ⁻³	0.0206

采样时间		2025-	04-21	
检测点号/点位	SI WI	S2 W2	S3 W3	S4 W0
样品编号	250853 S-1-1-1	250853 S-1-2-1	250853 S-1-3-1	250853 S-1-4-1
样品性状	水样撒挥。浅黄色	水拌微浑,浅黄色	水样做滞,浅黄色	水样微滞,浅黄色
六价格* (mg/L)	< 0.004	< 0.004	< 0.004	< 0.004
氰化物* (mg/L)	< 0.002	< 0.002	< 0.002	< 0.002

注。"*"表示该项目本公司无检测资质,分包至浙江中一检测研究院股份有限公司检测(资质认定证书编号: 221120341058)。

编制人 局元 (周儿)

报告日期: 2025年05月08日

申核人: 九月五

(黄 强)

人: (卢少维)

以下无正文

(6)_{田也喻号}。HJ250853

附表 地下水 GPS 定位信息

检测点号	檢測点位	GPS 定位		
		东是	北纬	
SI	WI	119" 59" 56.34"	30" 54' 09.98"	
S2	W2	119" 59" 58.33"	30" 54' 11.04"	
S3	W3	119" 59" 54.04"	30" 54" 12.64"	
S4	Wo	119* 59' 52.27"	30" 54" 11.66"	

附侧

注: 台-地下水果样点

检验检测报告

报告编号: (D) HJ250050

项目名称

浙江帕卡热处理科技有限公司 2025 年 4 月地下水自行 检测

委托单位

浙江帕卡热处理科技有限公司

湖州中一检测研究院有限公司

检测声明

- 1、本报告无本公司检验检测专用章及骑缝章均无效。
- 2、未经本公司书面允许,本报告不得部分复印。本报告经部分复印,未加盖本公司检验 检测专用章无效。
- 3、本报告内容需填写齐全,无本公司审核人、批准人签名无效。
- 4、本报告内容需填写清楚,经涂改、增删均无效。
- 5、本报告未经本公司书面同意,不得用于广告、商品宣传等商业行为。
- 6、本报告仅对本次采样样品的检测结果负责。
- 7、委托方若对本报告有异议, 请于收到报告之日起15天内向本公司联系。

一級

机构通讯资料:

地址: 浙江省湖州市红丰路 1366 号 6 幢 12 层 1206-1210 邮编: 313000

电话: 0572-2619111 传真: 0572-2612266

阿姓: www.zyjchz.com.cn Email: hzzy@zynb.com.cn

	检 测	说明		
受检单位	浙江帕卡热处理科技有限公司	采样地址	浙江省湖州市黄芝山路 518 号	
委托单位	浙江帕卡热处理科技有限公司	委托单位地址	浙江省湖州市黄芝山路 518号	
联系人/联系方式	屠建琴/18768276879	检测方案编号	FA (D) 250050	
样品类别	地下水	检测类别	委托检测	
采样日期	2025-04-21	检测日期	2025-04-22	
检测地址	斯江省湖州市江丰路 1366 号 6 制	計2层 1206-1210		
采样方法	地下水环境监测技术规范 HJ 164-2020			
检测项目	检测依据		主要分析仪器设备及型号	
高锰酸盐指数	水质 高锰酸盐指数的测定 GB/T 11892-1989		酸式滴定管 25mL	

检测结果

表 1 地下水检测结果

采样时间		2025-	04-21	AT /
检测点号/点位	SI WI	S2 W2	S3 W3	S4 W0
样品编号	(D)250050 S-I-I-I	(D)250050 S-1-2-1	(D)250050 S-1-3-1	(D)250050 S-1-4-
样品性状	水样微洋,线黄色	水样微浑、没黄色	水样微挥,浅黄色	水样崇浑,浅黄色
高锰酸盐指数(mg/L)	3.6	3.8	3.7	4.8

注: 本报告中检谢数据仅作调查研究或内部控制使用。

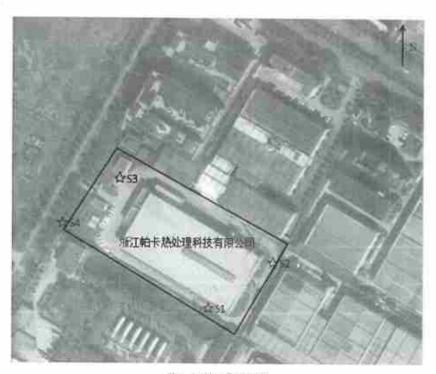
编则人。 局凡(羅凡)

#核儿花明元 (

(黄 强)

报告日期: 2025年05月08日

批准人 子明


(产少华)

以下无正文

附表 地下水 GPS 定位信息

检测点号	检测点位	GPS 定位		
and and a	48.00 At 15.	东经	北纬	
S1	W1	119" 59' 56.34"	30" 54' 09.98"	
S2	W2	119" 59" 58.33"	30" 54' 11.04'	
S3 /	W3	119" 59' 54.04"	30" 54" 12.64"	
S4	Wo	119" 59' 52.27"	30" 54" 11.66"	

附图

往: 台-地下水采样点

检验检测报告

报告编号: HJ251807

项目名称

浙江帕卡热处理科技有限公司 2025 年 9 月土壤及地下 水自行检测

委托单位

浙江帕卡热处理科技有限公司

湖州中一检测研究院有限公司

检测声明

- 1、本报告无本公司检验检测专用章及骑缝章均无效。
- 未经本公司书面允许,本报告不得部分复印;本报告经部分复印,未加盖本公司检验 检测专用章无效。
- 3、本报告内容需填写齐全, 无本公司审核人、批准人签名无效。
- 4、本报告内容需填写清楚,经涂改、增删均无效。
- 5、本报告未经本公司书面同意,不得用于广告、商品宣传等商业行为。
- 6、本报告仅对本次采样样品的检测结果负责。
- 7、委托方若对本报告有异议。请于收到报告之日起15天内向本公司联系。

机构通讯资料:

地址: 浙江省湖州市红丰路 1366 号 6 幢 12 层 1206-1210 邮编: 313000

电话: 0572-2619111 传真: 0572-2612266

同址: www.zyjchz.com.cn Email: hzzy@zynb.com.cn

	检 测	说明		
受检单位	浙江帕卡热处理科技有限公司	采料地址	浙江省潮州市黄芝山路 518号	
委托单位	浙江帕卡热处理科技有限公司	委托单位地址	斯江省湖州市黄芝山路 518 号	
联系人/联系方式	属建琴/18768276879	检测方案编号	FA251807	
样品类别	地下水、土壤	检测类别	委托检测	
采样日期	2025-09-25	检测日期	2025-09-25-2025-10-17	
检测地址	浙江省湖州市红丰路 1366 号 6 章 浙江省湖州市黄芝山路 518 号	第12层 1206-1216		
梁样方法	地下水环境监测技术规范 HJ 16 土壤环境监测技术规范 HJ/T166			
检测项目	检测依据		主要分析仪器设备及型号	
pH 值	水质 pH 值的测定 电极法 HJ I	147-2020	便携式电化学仪表 SX836	
東京	水质 复氮的测定 纳氏试剂分类 HJ 535-2009	光度法	可见分先光度计 7228	
阴离子表面活性剂	水质 阴离子表面活性剂的测定 度法 GB/T 7494-1987	可见分光光度计 N2		
硫酸根 (SOe ²)	水原 无机阴离子 (F、CF、NC POよ、SOよ、SOよ) 的測定 自 HJ 84-2016	离子色谱仪 CIC-D120		
磷酸盐	水质 磷酸盐的潮定 离子色谱法 HJ 669-2013		高子色谱仪 PIC-10	
版化物	水质 氟化物的测定 离子选择中 GB/T 7484-1987	1极法	离子计 PXSJ-216F	
tā	水质 铬的粉定 火焰原子吸收 757-2015	分光光度法 HJ	原子吸收分先光度计 TAS-990F	
12	水质 鉄、锰的测定 火焰原子(GB/T 11911-1989	及收分光光度法	原子吸收分光光度计 TAS-990F	
倒	水质 钢、锌、铅、镉的测定 』 度法 GB/T 7475-1987	原子吸收分光光度计 TAS-990F		
锌	水质 铜、锌、铅、镉的测定 馬 度法 GB/T 7475-1987	原子吸收分光光度计 TAS-990F		
耗氧量	地下水板分析方法第 68 部分: 表 性高锰酸钾滴定法 DZ/T 0064.6	酸式滴定管 25mL		
氰化物	地下水质分析方法第 52 部分: 製 獎-吡唑啉酮分光光度法 DZ/T 0	化物的测定 吡	可见分光先度计 7228	

检测项目	检测依据	主要分析仪器设备及型号
六价铬	地下水质分析方法 第 17 部分; 总络和六价格量的制定 二苯磺酰二肼分光光度法 DZ/T 0064,17-2021	可见分光光度计 №2
可萃取性石油烃 (Cip-Cet) **	水质 可萃取性石油烃 (C ₁₀ -C ₆) 的测定 气相 色谱法 HJ 894-2017	气相色谱仪 GC-2030
傑**	水质 65 种元素的测定 电感耦合等离子体质谱 法 HJ 700-2014	三重四级杆串级电感视合等离子体 质谱仪 1000G
рН债	土壤 pH 债的测定 电位法 HJ 962-2018	pH 计 PHS-3E 电子天平 YP802N
镀	土壤和沉积物 铜、锌、铅、镍、铬的测定 火 焰原子吸收分光光度法 HJ 491-2019	原子吸收分光光度计 TAS-990F
相	土壤和沉积物 桐、锌、铅、镍、铬的测定 火 焰原子吸收分光光度法 HJ 491-2019	原子吸收分光光度计 TAS-990F
铬	土壤和沉积物 铜、锌、铅、镍、铬的测定 火 焰原子吸收分光光度法 HJ 491-2019	原子吸收分光光度计 TAS-990F
钟	土壤和沉积物 铜、锌、铅、镍、铬的测定 火 焰原子吸收分光光度法 HJ 491-2019	原子吸收分先光度计 TAS-990F
六价特	土壤和沉积物 六价铬的测定 碱溶液提取-火焰 原子吸收分光光度法 HJ 1082-2019	原子吸收分光光度计 TAS-990F
氟化物	土壤质量 氟化物的测定 离子选择电极法 GB/T 22104-2008	离子计 PXSJ-216F
百油烃(C ₁₀ -C ₄₀)	土壤和沉积物 石油烃 (C ₁₀ C ₁₀) 的测定 气相色 谱法 HJ 1021-2019	气相色谱仪 GC2030
氰化物*	土壤和沉积物 氰化物和总氰化物的测定 分光 光度法 HJ 745-2015	可见分先光度计 L3

检测结果

表 1 地下水检测结果

采样时间	2025	09-25
检测点号/点位	SI WI	\$2 W2
样品编号	251807 S-1-1-1	251807 S-1-2-1
样品性状	水样微浑。浅黄色	水样微浑,浅黄色
pH 值 (无量網)	7.3	7.2
製製 (mg/L)	0.315	0.784
磷酸盐 (mg/L)	< 0.007	<0.007
阴离子表面活性剂 (mg/L)	< 0.050	< 0.050
硫酸极(SO4 ²)(mg/L)	112	115
類化物 (mg/L)	0.28	0,56
售 (mg/L)	< 0.03	< 0.03
锰 (mg/L)	0.94	1.38
例(mg/L)	< 0.02	< 0.02
锌 (mg/L)	<0.02	< 0.02
耗氧債 (mg/L)	2.4	2.9
六价格(mg/L)	< 0.004	< 0.004
氰化物 (mg/L)	< 0.002	< 0.002
可萃取性石油烃(C ₁₀ -C ₄₀)** (mg/L)	0.07	0.04
便** (mg/L)	0.0184	3.01×10 ⁻³

表 2 土壤检测结果

3	R 样时间			2025-09-25		
检测	点号/点位	GI SI	G2 S2	G3 S3	G4 S4	G5 S0
*	并品编号	251807 G-1-1-1	251807 G-1-2-1	251807 G-1-3-1	251807 G-1-4-1	251807 G-1-5-
	颜色	暗棕色	棕色	暗棕色	聯标色	暗棕色
土壤	湿度	潮	湖	705	æ	趣
性状	植物根系	中量	多量	多量	中重	少量
	土壤质地	轻填土	轻壤土	轻壤土	轻填土	轻壤土
土壤	深度 (m)	0-0.2	0-0.2	0-0.2	0-0.2	0-0.2
рН ((无量網)	6.96	6.92	6.90	7.03	6.87
躱(mg/kg)	18	27	26	15	14
铜(mg/kg)	18	24	22	13	16
络(mg/kg)	91	139	73	88	85
蜂(mg/kg)	75	159	125	53	58
六价钴	(mg/kg)	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
氧化物	(mg/kg)	423	506	479	454	451
	(C ₁₀ -C ₄₀) ng/kg)	10	56	26	12	13
氰化物	* (mg/kg)	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04

注:①"*"表示流项目本公司无检测资质。分包至浙江中一检测研究院股份有限公司检测(资质认定证书编号: 221120341058)。

②*****表示该项目本公司由于实验室任务过重,故分包至浙江中一检制研究院股份有限公司检测(资票认定证书编号:221120341058)。

编制人 局品 (用几)

审核人。

(黄 强)

报告日期: 2025年10月24日

挺 准 人。

(声の华)

以下无正文

(6)报告编号: HJ251807

附表 地下水、土壤 GPS 定位信息

检测点号	检测点位	GPS 定位		
IN BOOM 3	18.0% AT 18.	东经	北纬	
G1/S1	\$1/W1	119" 59' 56.34"	30" 54" 09.98"	
G2	S2	119" 59" 57.37"	30" 54" 12.08"	
G3/S2	\$3/W2	119" 59" 58.33"	30" 54" 11.04"	
G4	\$4	119° 59' 54.04"	30" 54' 12.64"	
G5	S0	119" 59' 52,27"	30" 54" 11.66"	

附阳

往: ☆-地下水采样点, ■-土壤采样点