浙江威昇作物科技有限公司 年度土壤及地下水自行监测报告

委托单位: 浙江威昇作物科技有限公司

编制单位: 湖州中一检测研究院有限公司

2025年10月

建设单位: 浙江威昇作物科技有限公司

编制单位: 湖州中一检测研究院有限公司

项目组成员

工作内容	姓名告专	用章联系方式	职称
项目负责人	丁凯翔	18267859037	工程师
方案编制			
资料收集	丁凯翔	18267859037	工程师
人员访谈			
质量控制	卢少华	15957275022	工程师
报告审核	廖桂陶	15857278805	高工

1			1
	1.1		1
	1.2		3
		1.2.1	3
		1.2.2	3
		1.2.3	4
	1.3		5
2			7
	2.1		7
	2.2		10
		2.2.1	10
		2.2.2	27
	2.3		27
3			30
	3.1		30
		3.1.1	30
		3.1.2	30
		3.1.3	30
	3.2		32
4			34
	4.1		34
		4.1.1	34
		4.1.2	35
		4.1.3	40
		4.1.4	45
		4.1.5	60
		4.1.6	69
	4.2		71
	4.3		76
		4.3.1	76
		4.3.2	79
5			85
	5.1		85
	5.2	/	85
	5.3		95
6			96
	6.1		/96

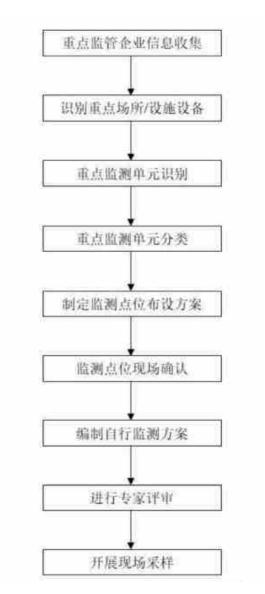
	6.2		99
	6.3		100
		6.3.1	100
		6.3.2	103
		6.3.3	106
	6.4		
7			110
	7.1		110
		7.1.1	110
		7.1.2	110
		7.1.3	111
	7.2		111
		7.2.1	111
		7.2.2	111
		7.2.3	112
		7.2.4	116
	7.3		119
		7.3.1	119
		7.3.2	119
8			
	8.1		125
		8.1.1	125
		8.1.2	126
		8.1.3	129
	8.2		131
	8.3		141
		8.3.1	141
		8.3.2	144
		8.3.3	146
	8.4		149
		8.4.1	149
		8.4.2	149
		8.4.3	
		8.4.4	
9			
	9.1		
	9.2		153
	9.3		153
			100

153	9.3.1	
155	9.3.2	
155	9.3.3	
157	9.3.4	
160	9.3.5	
164		10
164	10.1	
164	10.2	
164	10.2.1	
165	10.2.2	
166	1	
175	2	
218	3	

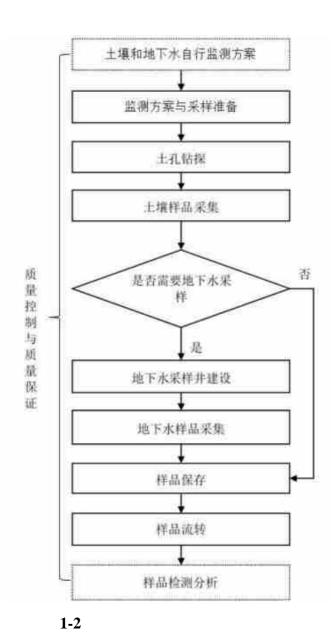
:

2025 3 26 2025

1.2			
	1.2.1		
	1	2015 5 1	
	2	3	
	3	42	
	4	2020	
	5	2019 1 1 :	
	6	[2016]31 :	
	7	2020 5 26	
	8	8	
	9	[2016]47	
	10	" " 2021.5.31	
	11	٠٠ ,,	
	2021 7 5		
	12	2025	
	1.2.2		
	1	НЈ1209-2021	
	2	202	21
	1		
	3		
	4		
	5		
	6		
	7		
	8		
C	GB36600-2018		
	9	GB/T14848-2017	
	10	GB/T32722-2016	


	11						HJ164-202	0			
	12					HJ	J/T166-2004	1			
	13						I	HJ610-201	6		
	14							HJ9	64-20	018	
	15								Н	J1019-	2019
	16							HJ25.1-2	2019		
	17								Н	IJ25.2-	2019
	18							HJ682	-2019)	
	19							2017	72		
	20										
										2020-0	04-01
	21							DB33/T	892-2	022	
		1.2.3									
	1						30000			200	00
								2022	2 7	7	
	2										2022
11											
	3						30000			200	00
							2022	10			
	4						30000			200	00
										2022	9
	5										
					2014	8					
	6										
			2025	5							
	7										
	8										

1.3


15257242715 13776410870

HJ1209-2021

/

1-1

2

2.1

8 2.1-

1 40070m² 2.1-1

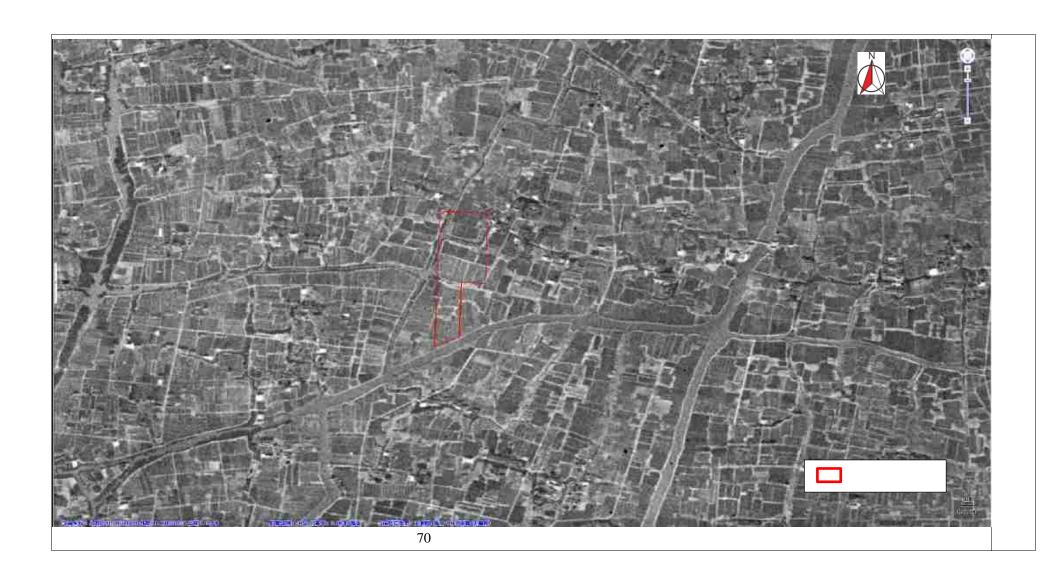
2.1-2


2.1-1

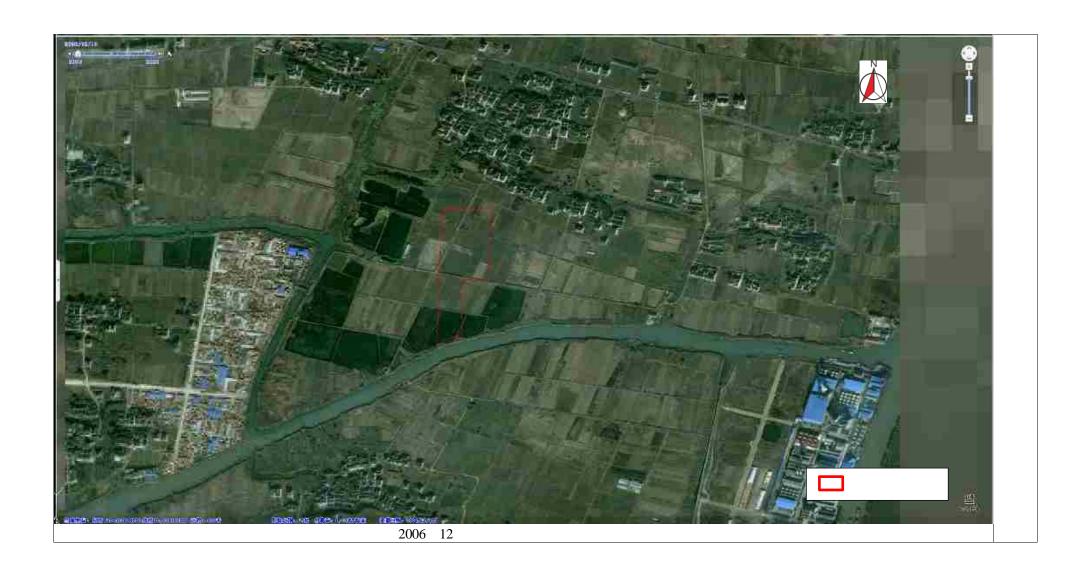
2.1-1

	2000		
	X	Y	
	3390477.391	529728.671	
J1	3390477.391	529731.671	
J2	3390490.828	529746.213	
Ј3	3390485.898	529871.040	
J4	3390284.010	529863.111	
J5	3390286.775	529794.197	
J6	3390128.300	529787.938	
J7	3390128.141	529787.077	
Ј8	3390122.991	529776.068	
Ј9	3390118.314	529754.291	
J10	3390099.908	529716.762	

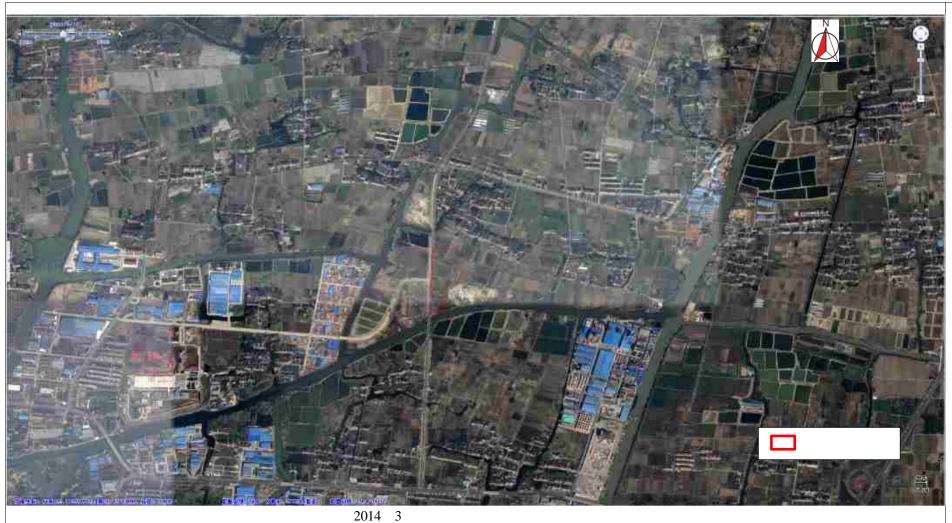
2.1-2



2.1-3


		2.2-1		
		2015		/
	2015	2025.3.20		
	2025.3.21			

2.2-2



2.2.2

30000 20000 2022 C2631 2.3 2023 2024 2025 3 20 1 C_{10} - C_{40} () (GB 36600-2018) (DB33/T 892-2022) **EPA** pН (7.63~9.29) pН (8.27~8.66) pН pН 2 pН CaCO₃ (GB/T14848-2017)IV (C10-C40) () 5 "

GB 3838-2002

GB 3838-2002

GB/T 14848-2017

3

 C_{10} - C_{40}

) (GB 36600-2018)

(DB33/T 892-2022)

EPA pH

 $(8.39 \sim 8.59)$

4

pH 7.8 GB 3828-

2002 GB 3828-2002

GB 3828-2002

GB 3828-2002

GB 3828-2002

pH

GB 3828-2002

(**M**)

3

3.1

2014 8

3.1.1

1.49 5.32m **3.1.2**

_

5.0 5

GB18306—2015

0.05g **3.1.3**

7 11

-1 0.50 5.10 2.18 -0.21

-2 0.20 1.40 1.79 0.82

0.40 1.60 4.18 -0.21 2.98 -1.31

1.50 10.90 2.98 -1.31 -0.57 -10.95

-1

1.30 5.90

-0.57 -5.87 -3.17 -7.96

-2

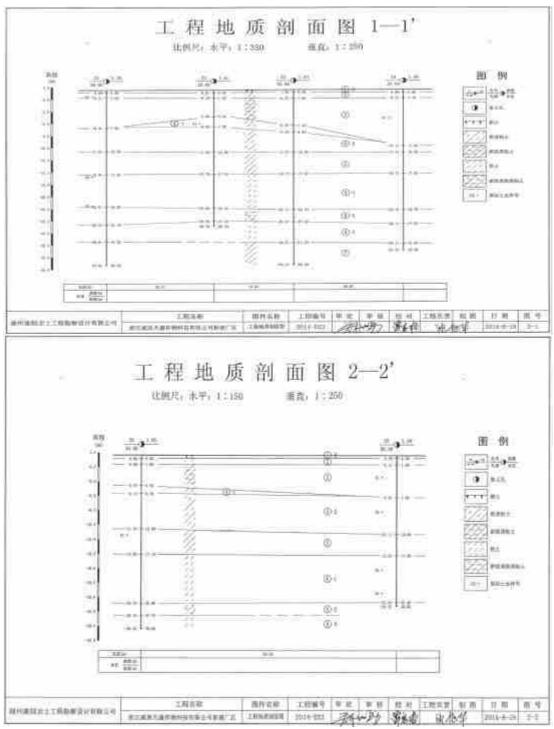
1.30 8.10 -3.17 -10.11 -8.28 -12.38

0.70 6.30 -8.28 -12.38 -13.47 -17.80

-1

0.40 10.90 -13.47 -17.08 -21.48 -25.99

-2


0.60 6.20 -22.09 -24.52 -23.26 -30.46

-3

0.20 4.90 -21.48 -26.31 -25.58 -30.11

5.70 -23.71 -30.46 34.30

27.60 ~

3.1-1

3.2

2014 8

-1

0.30~2.20m 1.07~1.87m

1.00~1.50m

3.2-1

Suffer11.0 3.2-1

3.2-1 m

W1	12.646	1.8	10.846
W2	12.540	1.7	10.840
W3	12.508	1.7	10.808
W4	12.476	1.9	10.576
W5	12.44	1.8	10.64
WDZ	12.5	1.6	10.9

3.2-1

4.1

4.1.1

" " 2014 14038.2 1

2-1

2017 6

2018 4 17

2019 7 29

0003 9133050009280833X9001P

2022-04-17 2027-04-16

2-1

	/	/	/	
15000		2015 15	2015.1	2017.12
3				8000
			2017.5	1.8
				2021.12
15000		2021 110	2021.7	26700

" "

2021 4 10000 8

" 15000 2

3 " " 15000

" 30000 20000

" 30000

20000 " 3

2025 95

91330521MA2JM8R3W001P

33052120037

0087

2025 3 20

2025 13

2025 4

40070

26589

30000

5668

1 72327

20000

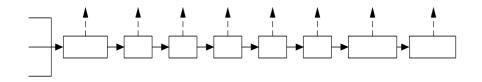
"

["] 30000 20000

4.1.2

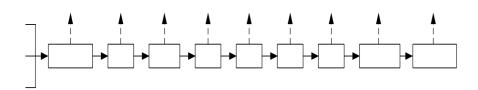
				t/a
	1	25	50 /	100
	2	150 /	+150 /	150
6#	3	250 /	+80 /	150
				400
	1		20%	100
	2	25 /		100

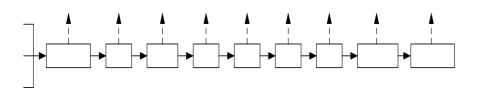
	3	50 /	50
	4	250 /	100
	5	5%	100
	6	8%	50
	7	5%	200
	8	3%	200
			900
	1	480 /	50
	2	150 /	100
	3	300 /	200
	4	5%	50
	5	40%	300
	6	20%	100
	7	30%	50
	8	125g/L	50
	9	25g/L	50
			950
			2250
	1	350 /	100
	2	100 /	50
	3	240 /	50
	4	100 / +20 /	100
	5	200 / +50 /	100
7#	6	141 / +106 /	100
	7	24% ·	200
	8	240 /	100
	9	10% ·	100
	10	44% .	200
	11	30% ·	200
	12	3% ·	200
	13	5%	300
	14	30%	100

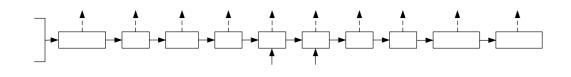

15	20% ·	150
16	25%	100
17	240 /	200
18	250 /	200
19	22.5%	50
20	30%	200
21	430 /	100
22	200 / +30 /	100
23	200 / +125 /	100
24	200 / +120 /	100
25	175 / +150 /	100
26	200 / +175 /	100
27	120 / +50 /	100
28	720 /	100
29	40%	100
30	40% •	50
31	40% •	50
32	120g/L +120g/L	50
33	50%	50
34	40% ·	50
35	200 /	50
36	12% •	100
37	6% •	50
38	5%	50
39	43%	50
40	200g/L +300g/L	50
		4300
1	250 /	100
2	45% •	50
3	0.004%	50
4	0.4%	0
5	0.001%	200
6	3%	50
U	370	30

			450
			4750
	1	20%	50
	2	25%	50
	3	80%	50
	4	70%	450
	5	80%	450
	6	75%	300
	7	50%	100
	8	41%	20
	9	70%	1000
	10	66.8%	100
		·	2570
	1	5.7%	200
	2	60%	100
	3	11% ·	100
8#	4	70%	100
	5	30%	100
	6	60%	300
	7	60%	100
	8	30%	50
	9	75%	100
	10	40% +10%	100
	11	45%	100
	12	80%	50
	13	60% ·	500
	14	70% ·	50
	15	50%	100
	16	75% .	100
	17	50%	20
			2170
			4740
	1	41%	1000

	2	18%	10500
		•	11500
	1	69 /	200
	2	100 /	50
10#	3	250 /	50
10#	4	120g/ +110g/L	50
			350
	1	550 / ·	100
	2	5%	50
		1	150
			12000
	1	20%	300
	2	20%	100
	3	25 /	200
	4	4.5%	100
	5	50 /	50
	6	5.7%	200
	7	25 /	50
	8	25 /	300
	9	10%	100
	10	45%	200
12#	11	5%	50
	12	1.8%	100
	13	50 /	300
	14	25%	50
	15	5%	300
	16	50 /	200
	17	480 /	500
	18	500 / +50 /	1000
	19	100 /	100
	20	5%	100
	21	50 /	50
	22	100 /	50

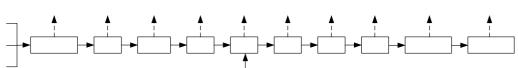

	23	150 / +50 /	50
	24	73%	50
	25	40%	50
	26	30%	50
	27	30%	200
	28	40%	300
	29	250 /	50
	30	250 /	100
	31	180 /	100
	32	108 /	100
	33	125 /	100
	34	100 / +27 /	100
	35	200 /	50
	36	80 / +20 /	100
			5800
11#	1	75.7%	260
	2	5%	200
			460
			30000
15#	1		2500
	2		2500
	3		3000
15#	4		3000
1511	5		3000
	6		3000
	7		3000
			20000


4.1.3


4.1-1

2

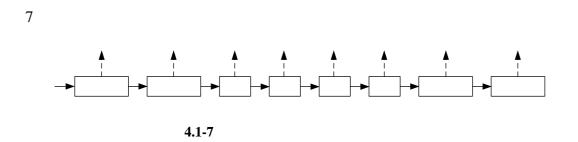
4.1-3



4.1-4

60

30min 80 60


5

4.1-5

120

50 30min 60 40

рН

рН

9

4.1.4

4.1-2

6#

	t	t	t	t	t
	I			· ·	
1	15.000	/	/	15.000	1.5
2	15.000	/	/	15.000	1.8
3	20.000	/	/	20.000	3.0
4	2.500	/	/	2.500	0.3
5	48.000	/	24.036	23.964	2.4
6	24.383	/	/	24.383	2.2
7	60.000	/	/	60.000	6.0
8	20.000	/	/	20.000	3.0
9	27.744	/	/	27.744	2.0
10	2.500	/	/	2.500	0.3
11	97.722	/	/	97.722	9.8
12	5.003	/	/	5.003	0.5
13	14.295	1.727	/	16.022	2.4
14	6.322	/	/	6.322	1.1
15	67.106	/	/	67.106	6.7
16	15.509	/	/	15.509	2.3
17	8.146	/	/	8.146	0.8
1	16.000	/	/	16.000	1.6
2	18.900	/	9.281	9.619	9.6
3	1.650	0.336	/	1.986	0.4
4	29.800	/	/	29.800	1.9
5	1.635	/	/	1.635	0.7
6	8.441	/	/	8.441	1.0
7	21.025	18.344	/	39.369	69.2
8	121.782	5.005	/	126.787	14.4
9	0.057	0.504	/	0.561	0.5
10	/	1.512	/	1.512	2.8

1		88.273	4.984	1.000	92.257		29.6	
2		54.858	/	/	54.858		12.0	
3	S-1500	256.029	/	/	256.029		70	
4		982.467	119.812	15.707	1086.572	/	/	
5		/	17.655	/	17.655		1.8	
6		/	17.622	/	17.622		75	
7	31%	/	0.112	/	0.112		0.1	
8	S-200	/	31.999	/	31.999		35	
		/	+	/				
	7.4			/				
	7#							
1		48.185	/	/	48.185		2.8	
2		33.703	/	/	33.703		3.4	
3		86.056	38.248	/	124.304		8.6	
4		61.731	/	/	61.731		3.7	
5		48.000	/	/	48.000		4.8	
6		50.000	8.820	/	58.820		5.9	
7		0.165	/	0.148	0.017		0.0	
8		0.205	1.540	0.205	1.540		0.1	
9		87.117	6.188	/	93.305		3.9	
10		28.950	/	/	28.950		2.9	
11		35.107	/	/	35.107		3.5	
12		8.929	2.548	/	11.477		2.3	
13		16.976	10.136	/	27.112		2.7	
14		16.858	/	/	16.858		2.0	
15		18.559	/	/	18.559		1.9	
16		13.387	/	/	13.387		2.9	
17		8.456	0.532	/	8.988		1.1	
18		69.402	/	/	69.402		3.0	
19		42.543	/	/	42.543		4.3	
20		7.532	2.856	/	10.388		2.4	
21		7.308	2.604	/	9.912		1.8	
22		60.407	22.204	/	82.611		8.3	

23		41.033	/	/	41.033		2.2	
24		20.501	/	/	20.501		2.1	
25		28.861	/	/	28.861		2.3	
26		11.697	/	/	11.697		1.2	
27		32.285	6.188	/	38.473		3.8	
28		14.057	/	/	14.057		2.7	
29		54.219	/	/	54.219		9.3	
30		/	14.420	/	14.420		1.4	
31		/	19.012	/	19.012		1.9	
32		/	25.228	/	25.228		11.3	
33		/	15.344	/	15.344		1.5	
34		/	5.236	/	5.236		0.5	
35		/	9.884		9.884		1.0	
1		33.000	/	/	33.000		9.6	
2		28.000	/	/	28.000		1.9	
3		5.000	/	/	5.000		0.9	
4		6.943	1.568	/	8.511		0.4	
5		17.913	2.912	/	20.825		1.0	
6		15.000	/	/	15.000		1.5	
7		154.884	7.084	3.448	158.520		69.2	
8		0.900	/	/	0.900		2.1	
9		35.515	65.828	/	101.343		14.4	
10		14.143	4.536	/	18.679		0.7	
11		10.462	3.556	/	14.018		0.5	
12		/	4.900	/	4.900		2.8	
1		303.836	22.960	16.119	310.677		29.6	
2		4.115	4.592	0.231	8.476		12.0	
3		2496.566	355.460	29.879	2822.147	/	/	
4	S-1500	29.983	/	/	29.983		70	
5		/	4.592	/	4.592		75	
6		/	9.408	/	9.408		0.9	

7	S-200	/	23.016	/	23.016	35	
		/	+				
	8#						
							
1		10.000	/	/	10.000	1.0	
2		123.630	/	/	123.630	8.6	
3		315.000	/	/	315.000	11.3	
4		360.000	/	/	360.000	36.0	
5		225.000	/	/	225.000	9.3	
6		50.000	/	/	50.000	5.0	
7		40.804	/	/	40.804	2.4	
8		190.072	/	/	190.072	19.0	
9		10.000	/	/	10.000	1.0	
10		70.000	/	/	70.000	3.5	
11		66.226	/	/	66.226	2.7	
12		31.300	/	/	31.300	2.8	
13		31.000	/	/	31.000	1.8	
14		23.712	/	/	23.712	3.9	
15		282.270	/	/	282.270	28.2	
16		182.786	/	/	182.786	18.3	
17		17.500	/	/	17.500	1.8	
18		75.031	/	/	75.031	2.9	
19		41.156	/	/	41.156	2.3	
20		20.488	/	12.292	8.196	0.8	
21		0.591	/	0.355	0.236	0.1	
22		762.327	/	/	762.327	25.4	
23		5.546	/	/	5.546	0.6	
24		49.055	/	/	49.055	3.7	
25		/	9.776	/	9.776	1.0	
1		23.500	/	/	23.500	2.4	
2		35.000	/	/	35.000	3.5	
3		15.500	/	/	15.500	1.6	

4		309.886	3.344	11.997	301.233		14.4	
5		87.200	/	/	87.200		3.3	
6		73.980	0.592	/	74.572		2.8	
7		35.600	/	/	35.600		3.6	
8		202.833	/	5.082	197.751		19.8	
9		14.000	/	/	14.000		1.4	
10		220.361	3.008	/	223.369		9.6	
11		7.000	/	/	7.000		0.7	
12		687.797	2.240	/	690.037		23.0	
13		57.951	0.928	/	58.879		2.1	
14		21.498	/	0.295	21.203		0.8	
1		303.376	2.976	/	306.352	/	/	
		/ -	+					
	40.11							
	10#							
1		12.500	/	/	12.500		1.3	
2		378.000	/	/	378.000		20.5	
3		2264.573	/	283.087	1981.486		198.1	
4		5.000	5.580	/	10.580		1.1	
5		13.800	/	/	13.800		1.4	
6		5.700	/	/	5.700		0.6	
7		/	4.536	/	4.536		0.5	
8		/	4.330	/	4.330		4.5	
9		/	2.548	/	2.548		0.3	
10			6.100		6.100		0.6	
10		/	0.100	/	0.100		0.0	
1		20.000	/	/	20.000		14.4	
2		21.000			21.000		0.9	
3		1717.574	14.600	203.896	1528.278		69.2	
4		40.000	/	/	40.000		4.0	
5		3.000		/	3.000		2.1	
			15 512					
6		/	15.512	/	15.512		9.6	

7		/	0.504	/	0.504		1.0	
8		/	0.504	/	0.504		0.7	
9		/	0.504	/	0.504		6.3	
10		/	0.168	/	0.168		0.4	
11		/	0.560	/	0.560		0.5	
1	S-1500	72.320	23.800	/	96.120		70	
2		12.500	/	/	12.500		12	
3		105.000	/	/	105.000		34	
4		546.615	3.976	67.830	482.761		29.6	
5		8040.162	38.360	945.580	7132.942	/	/	
6	20%	100.000	/	/	100.000		116	
7		/	19.012	/	19.012		1.6	
8		/	19.012	/	19.012		1.9	
		/	+					
	11 _i	"						
1		/	237.315	/	237.315		20.5	
2		/	10.710	/	10.710		1.1	
1		/	6.110	/	6.110		0.6	
2		/	3.055	/	3.055		0.8	
3		/	10.660	/	10.660		3.3	
4		/	9.350	/	9.350		9.6	
5		/	131.920	/	131.920		14.4	
6		/	17.340	/	17.340		1.7	
7		/	29.750	/	29.750		3.0	
1		/	84.870	/	84.870	/	/	
		/ -	+					
	12	2#						
1		67.756	/	/	67.756		3.0	
			1	1	İ	1	1	

2	20.000	/	/	20.000	2.0
3	16.278	/	/	16.278	2.0
4	4.500	/	/	4.500	0.5
5	2.500	/	/	2.500	0.3
6	11.400	/	/	11.400	1.1
7	2.500	/	/	2.500	0.3
8	7.500	/	/	7.500	0.8
9	10.000	/	/	10.000	1.0
10	782.965	/	/	782.965	26.1
11	2.500	/	/	2.500	0.5
12	17.143	/	/	17.143	1.1
13	15.000	/	/	15.000	2.3
14	72.044	/	/	72.044	2.4
15	6.000	/	/	6.000	2.8
16	174.000	/	/	174.000	17.4
17	12.500	/	/	12.500	8.6
18	25.000	/	/	25.000	2.3
19	5.173	/	/	5.173	2.4
20	2.703	/	/	2.703	0.3
21	7.759	/	/	7.759	0.8
22	40.107	/	/	40.107	4.0
23	20.626	/	/	20.626	2.1
24	15.518	/	/	15.518	1.6
25	19.516	/	/	19.516	1.1
26	11.577	/	/	11.577	1.2
27	13.731	/	/	13.731	1.4
28	10.625	/	/	10.625	1.1
29	5.726	/	/	5.726	0.6
30	10.759	/	/	10.759	1.1
31	10.630	/	/	10.630	1.1
		T	T		
1	356.855	/	/	356.855	69.2
2	184.027	/	/	184.027	14.4

							-			
3			20.000	/	/	20.0	000		2.0	
4			20.000	/	/	20.0	000		2.0	
5			4.000	/	/	4.0	000		0.4	
6			9.000	/	/	9.0	000		0.9	
7	7		35.000	/	/	35.0	000		3.5	
									1	_
1	1 S-1500		3246.044	/	/	3246	5.044		70	
2			129.210	/	/	129.	.210		75	
3			50.000	/	/	50.0	000		5.0	
4			286.295	/	/	286.	.295		12	
5			69.999	/	/	69.	999		7.0	
6			30.000	/	/	30.0	000		3.0	
7			30.997	/	/	30.9	997		1.6	
			/ -	H						
15#-1										
1		200	/	/	20	00		14	4.9	
2		437.5	/	/	43	7.5		19	9.7	
3		1450	/	/	14	150		7	4.7	
4		125	/	/	12	25		4	1.2	
5		27.5	/	/	27	7.5		1	1.1	
6		152.5	/	/	15	2.5		5	5.1	
7	EDTA-Zn	67.5	/	/	67	7.5		2	2.3	
8	EDTA-Cu	17.5	/	/	17	7.5		C).6	
9	EDTA-Fe	20	/	/	2	20		C	0.7	
10		2.5	/	/	2	.5		0).1	
11	EDTA-2Na	716	/	/	7	16		50	6.5	
12		578.25	5 /	/	578	3.25		22	2.6	
			/ +							
		15 i	#-2							
1	EDTA-2Na	979.8	/	/	979.8	8		56	.5	
2		288.6	/	/	288.0	6		9.	6	
3		170.4	/	/	170.4	4		5.	7	
			•					•		

4		89.7	/	/	89.7		3.0	
5		99.6	/	/	99.6		22.6	
6		304.2	/	/	304.2		11.1	
7		2.4	/	/	2.4		0.1	
8		187.5	/	/	187.5		6.3	
9		187.5	/	/	187.5		6.3	
10		246	/	/	246		14.9	
11		153.6	/	/	153.6		19.7	
12		1516.8	/	/	1516.8		74.7	
13		6.6	/	/	6.6		0.2	
14		246.6	/	/	246.6		8.2	
15		2652.3	/	/	2652.3		88.4	
16		2.4	/	/	2.4		0.1	
17		1189.5	/	/	1189.5		39.7	
18		1516.8	/	/	1516.8		74.7	
19		80.4	/	/	80.4		2.7	
20		394.8	/	/	394.8		13.2	
21		5720	/	/	5720	/	/	
			/ +					
1		/	500	/	500		100	
2		/	200	/	200		30	
3		/	200	/	200		10	
4	37%	/	2.5	/	2.5		2.5	
5		/	100	/	100		10	
6		/	2.5	/	2.5		2.5	
7		/	2.5	/	2.5		2.5	
1		/	253.267	/	253.267		25	
2		/	24.743	/	24.743		2.5	

3		/	19.979	/	19.979		20		
4		/	2.459	/	2.459		2.5		
5		/	2.459	/	2.459		2.5		
6		/	2.459	/	2.459		2.5		
7		/	2.459	/	2.459		2.5		
8		/	0.461	/	0.461		0.5		
9		/	194.407	/	194.407		/		
10		/	27.082	/	27.082		3		
11		/	23.525	/	23.525		2		
12		/	333.186	/	333.186		30		
13		/	43.768	/	43.768		4		
14		/	74.953	/	74.953		7		
15		/	75.363	/	75.363		7		
16		/	61.122	/	61.122		6		
17		/	55.964	/	55.964		6		
18		/	146.119	/	146.119		15		
19	S- 1500	/	238.374	/	238.374		20		
	/ +								

4.1-3

1	49774.3t	934t	12657.7t	38050.6t	
2	2015.15 kwh	50 kwh	400.15 kwh	1665 kwh	
3	11528t	240t	30t	11978t	

1		CAS	137512-	74-4			1	41-146
		CAS	135410	-20-7		101-1	.03	352.4°C at
2		760mmF	Яg	166.9		3.85E-0)5mmHg a	nt 25°C
2		1.2g/cm	1 ³		LD_{50}	146mg/kg		
						3		

3	CAS 156410-09-2	195 1.8g/	/cm ³
3		LD ₅₀ 5492mg/kg	
	CAS 1776-83-6	454.9°C at 760	mmHg
4	228.9 4.9	95E-08mmHg at 25°C 1.28	8g/cm ³
		463.1℃ at 760mmH ₈	g
5	233.9 0.0m	mHg at 25° C 1.4 g/cm ³	
6	CAS 131341-86-1	199.4 4	
6	760mmHg 199.4 1.6g/cm ³	0.0mmHg at 25°C LD ₅₀ 5000mg/kg	_
	CAS 80443-41-0		476.9 at
	760mmHg 242.2	0.0133mPa 20	
7	1 1.14	LD ₅₀ 4000mg/kg	
	CAS 76674-21-0	130°C 506.5°C at 7	760mmHg
8	260.1	0.0mmHg at 25°C 1.3g/cn	
	LD ₅₀ 1140mg/k	g	4
	CAS 175013-18-0	63.7-65.2°C	501.1°C at
9	٥	0.0 mmHg at 25 °C $LD_{50}>5000$ mg/kg	
	CAS 103055-07-8	164.7-167.7	
10	170 1.2>	<10 ⁻⁹ Pa 25	1
	1.631 20°	°C <0.006mg/L	
	CAS 122453-73-0	100.5	5°C
11	443.5°C at 760mmHg	222°C 4.6E-08	SmmHg at
	25°C 1	1.53 LD ₅₀ 4	459mg/kg
	CAS 71751-41-2	<u> </u>	40.912 at
	760mmHg 150	$2 \times 10^{-7} \text{Pa}$	40.712 at
12	1.16 21	10μg/L	LD_{50}
	10mg/kg	2	50
	CAS 144171-61-9	139-141°C	571.4 at
10	760mmHg 299.3	1.6mmHg at 25°C	
13	1 1.53	LD ₅₀ 268mg/kg	
	GAG 140055 41.0	3	
14	CAS 149877-41-8	123-125°	C
14	>125°C >230°C	1 1.19 D ₅₀ >5000mg/kg	
	CAS 178928-70-6	139.1-144.5°C	486.7
	at 760mmHg 248.2	0.0mmHg at 25	
15	$1.5 g/m^3$ LC ₅₀ 96l	•	
	1.2mg/L	2	
	CAS 77-06-5	227 62	28.6°C at
16	760mmHg 231.4	0.0mmHg at 25°C	
16		LD ₅₀ 6300mg/kg LC ₅₀	
		150mg/L	

	CAS 67747-09-5 46-49 499.8°C at
	760mmHg 256.1 0.0mmHg at 25°C
17	1.4g/cm^3 LD ₅₀ 1600 mg/kg
	4
	CAS 10605-21-7 300°C
10	406.1°C at 760mmHg 199.4 0.0mmHg at 25°C
18	$1.4g/cm^3$ LD_{50} $6400mg/kg$ LC_{50} $96h$
	0.3mg/L
	CAS 23564-05-8 172 478.4°C at
10	760mmHg at 25°C
19	1.5g/cm^3 LD ₅₀ 500 mg/kg
	4
	CAS 120116-88-3 152.7
20	498.2°C at 760mmHg 255.1 0.0mmHg at 25°C
	$1.4g/cm^3$ LD ₅₀ 5000mg/kg
	CAS 110488-70-5 125.2-149.2°C 584.9°C
	at 760mmHg 307.5 0Pa 25
21	1 1.32 20 LD_{50} 3500mg/kg LC_{50}
	96h 3mg/L 5
	2
	CAS 129558-76-5 87.8-88.2 540°C at
	760mmHg 280.4 <5.6×10-7pa 25°C
22	$1.2g/cm^3$ LD_{50} $150mg/kg$
	3
	CAS 188425-85-6 142.8-143.8°C 557.0°C
22	at 760mmHg 290.7 0.0mmHg at 25°C
23	1.3g/cm^3 LD_{50} 5000mg/kg LC_{50} 96h
	2.7mg/L 2
	CAS 122008-85-9 49.5 449.1 at
24	760mmHg 85 2.94E-08mmHg at 25°C
24	1 1.21 LD ₅₀ >5000mg/kg
	LD ₅₀ >2000mg/kg 5
	CAS 104206-82-8 165°C
25	643.3°C at 760mmHg 342.9 0.0mmHg at 25°C
	1.5g/cm^3 LD ₅₀ 5000 mg/kg
	CAS 1610-17-9 270.1°C at 760mmHg
26	117.2 0.0mmHg at 25°C 1.2g/cm ³
	LD ₅₀ 1465mg/kg 4
	CAS 219714-96-2 212°C
27	$2.49 \times 10^{-14} \text{Pa}$ 20 1.61g/cm^3
	LD_{50} 5000mg/kg
	CAS 256412-89-2 77°C 589.6°C at
	760mmHg 310.4 0.0mmHg at 25°C
28	$1.4g/cm^3$ LD_{50} $2000mg/kg$ LC_{50} $96h$
	0.307mg/L 5
	0.307 mg/L 3
20	
29	CAS 1071-83-6 230°C 465.8°C at

	760mmHg 235.5°C 0.0mmHg at 25°C	
	1.7g/cm ³ LD ₅₀ 4873mg/kg	
	CAS 314-40-9 157-160°C	
30	411°C 25	
	1 1.55 LD ₅₀ 5200mg/kg	EC_{50}
	72h 0.013mg/L 1	
	CAS 11138-66-2 150	
31		
	18°C 100-199	1
32	1.05	
02	LD ₅₀ >5000mg/kg LC ₅₀ 96h >100mg/L EC ₅	50
	48h >100mg/L	
	30°C 100-199 1	1.03
22		
33	LD ₅₀ >5000mg	g/kg
	LC ₅₀ 96h >100mg/L EC ₅₀ 48h >100mg/L	
34	0°C >100	1
74	1 <1	
	CAS 10279-57-9 1610°C at 760mmHg	
35	2.6g/cm ³	
	CAS 99026-99-0 783.6°C at 760mm	Uα
		пg
36	268.3 0.0mmHg at 25° C 1.5 g/cm ³	
	LD ₅₀ 5400mg/kg	
	CAS 71205-22-6	
37	8%	pН
	7.5-9.5	L
	CAS 532-32-1 >300°C 249.	.3 at
		s at
38	760mmHg 111.4 <0.01hPa 20	
	1.44g/cm^3 LD ₅₀ 2100 mg/kg	
	5	
39		2.54-
39	2.60g/cm ³ 1785	2.54-
39	2.60g/cm ³ 1785	2.54-
39	2.60g/cm ³ 1785 CAS 7783-20-2 330 at 760mmHg	
	CAS 7783-20-2 330 at 760mmHg	
	CAS 7783-20-2 330 at 760mmHg 280 0hPa 25 1 1	; 1.77
40	CAS 7783-20-2 330 at 760mmHg 280 0hPa 25 1 1 LD ₅₀ 4250mg/kg	Ţ,
40	CAS 7783-20-2 330 at 760mmHg 280 0hPa 25 1 1 LD ₅₀ 4250mg/kg 0.1%	; 1.77
40	CAS 7783-20-2 330 at 760mmHg 280 0hPa 25 1 1 LD ₅₀ 4250mg/kg 0.1%	; 1.77
40	CAS 7783-20-2 330 at 760mmHg 280 0hPa 25 1 1 LD ₅₀ 4250mg/kg 0.1% 10ppm pH 5.0 CAS 151-21-3 205	5 1.77 5
40 41	CAS 7783-20-2 330 at 760mmHg 280 0hPa 25 LD ₅₀ 4250mg/kg 0.1% 10ppm pH 5.0 CAS 151-21-3 205 216 170 <0.18Pa =1	; 1.77
40 41	CAS 7783-20-2 330 at 760mmHg 280 0hPa 25 1 1 LD ₅₀ 4250mg/kg 0.1% 10ppm pH 5.0 CAS 151-21-3 205	5 1.77 5
40 41 42	CAS 7783-20-2 330 at 760mmHg 280 0hPa 25 LD ₅₀ 4250mg/kg 0.1% 10ppm pH 5.0 CAS 151-21-3 205 216 170 <0.18Pa =1	5 1.77 5
40 41 42	CAS 7783-20-2 330 at 760mmHg 280 0hPa 25 1 1 LD ₅₀ 4250mg/kg 0.1% 10ppm pH 5.0 CAS 151-21-3 205 216 170 <0.18Pa =1 LD ₅₀ 1200mg/kg 4	0.63
40 41 42	CAS 7783-20-2 330 at 760mmHg 280 0hPa 25 1 1 LD ₅₀ 4250mg/kg 0.1% 10ppm pH 5.0 CAS 151-21-3 205 216 170 <0.18Pa =1 LD ₅₀ 1200mg/kg 4 CAS 7757-82-6 108.9 2.68	0.63 g/cm ³
40 41	CAS 7783-20-2 330 at 760mmHg 280 0hPa 25 1 1 1 LD ₅₀ 4250mg/kg 0.1% 10ppm pH 5.0 CAS 151-21-3 205 216 170 <0.18Pa =1 LD ₅₀ 1200mg/kg 4 CAS 7757-82-6 108.9 2.68 LD ₅₀ 2000mg/kg	0.63
40 41 42 43	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.63 0.63
40 41 42	CAS 7783-20-2 330 at 760mmHg 280 0hPa 25 1 1 1 LD ₅₀ 4250mg/kg 0.1% 10ppm pH 5.0 CAS 151-21-3 205 216 170 <0.18Pa =1 LD ₅₀ 1200mg/kg 4 CAS 7757-82-6 108.9 2.68 LD ₅₀ 2000mg/kg	0.63 0.63

		1.9-2.3g/cm ³ 1650 -1750
46		CAS 107-21-1 -13 197.4 111 0.123hPa =1 1.11 % V/V 3.2-15.3 LD ₅₀ 7712mg/kg
47		CAS 67-56-1 - 169.27hPa 25 = 1 0.79-0.8
48		CAS 1330-20-7 -34 137-140 32.2 6mmHg at 25°C 0.9g/mL % V/V 1.1-7 3
49		CAS 7647-01-0 -88.5 108.6 30.66kpa 21 1.20g/cm ³ LC ₅₀ 3124mg/m ³
50	S-1500	175 >60 0.278kPa =1 0.895 % V/V 1-7
51	S-200	0.005kPa =1 0.996 90 90 90 90 90 90 90 90 90 90 90 90 90
52		CAS 108-94-1 -32.1 155.6 44 0.5kPa 20°C =1 0.95 % V/V 1.1-9.4 LD ₅₀ 1535mg/kg 4
53		CAS 8012-95-1 -15 260-450 215 =1 0.827-0.89 LD ₅₀ >5000mg/kg
54		CAS 112-62-9 -20 218 159 4.1E-05mmHg at 25°C =1 0.874 LD ₅₀ 54mg/kg 2
55		CAS 75-05-8 -45.7 81.6 12.8 13.33kPa 27 =1 0.79 % V/V 3.0-17 LD ₅₀ 469mg/kg 4 2
56		CAS 108-88-3 -95 111 4.4 22mmHg at 25 =1 0.866 % V/V 1.1-7.1 2
57		CAS 67-64-1 -94.9 56.53 - 20 53.32kPa 39.5 =1 0.7899 % V/V 2.5-12.8 2
58		CAS 10043-52-4 775 1935 1600 =1 2.15 LD ₅₀ >5000mg/kg
59		CAS 7786-30-3 714 1412 =1 2.32 LD ₅₀ 2800mg/kg

	5

4.1.5

			/	
1		zlb-100	2	/
2		fg-1	2	/
3		zs-0.1	1	/
4		rt-550	1	/
5		rtsm-0.5ad	2	/
6		/	8	/
7	20L	/	2	/
8		/	3	/
9		/	1	/
10		/	3	/
11		YQ50	1	/
12		/	1	/
13		/	2	/
14		PL-1000	1	/
15		1220	6	/
16		GC9790-	2	/
17	рН	PHS-3E	1	/
18		ZSD-2	1	/
19		/	1	/
20		SYD-5208D	1	/
21		DW-2	1	/
22		BT9300S	1	/
23		752	1	/
24		Anton Paar	1	/
25		FZX-Y	1	/
26		NDJ-1	1	/
27		ZXF-I	1	/
-·		6#		•
		EC 2		
1		2.5KL	3	/
2		5KL	2	/
		20KL	1	
3		30KL	1	/
4		CBF-C2-304	2	/

5		CQB50-32-160	2	/			
6		NSQ40-PF1-S	2	/			
7		600mm*1300mm	2	/			
,	EW 1						
1		1.5KL	2	/			
1		1.3KL 1.47KL	1	/			
2		3.99KL	3	/			
		20KL	1	/			
3		30KL	1	/			
4		CBF-C2-304	2	/			
5		CQB50-32-160	2	/			
6		NSQ40-PF1-S	2	/			
7		600mm*1300mm	2	/			
		SC 2	2	,			
1		2KL	2	/			
2		3KL	2	/			
3		2KL	2	/			
4		0.4KL	4	/			
				/			
5		60L	5	/			
6		10KL	6	/			
7		CLF-159-F50P1.0	2	/			
8		/	10	/			
9		600mm*1300mm	2	/			
1							
1		LP-200	4	/			
2		/	4	/			
3		CZ-6C	1	/			
		CCG-1000-16G	3	/			
4		/	3	/			
5		FX	5	/			
6		DG-4000	11	/			
7		VJ1220	9	/			
8		XH-1000	5	/			
9		TN	6	/			
10		GPK-40D	4	/			
11		/	2	/			
12		MH-FJ-3A	4	/			
13		MH-102B	4	/			
14		/	4	/			
15	200L	G-200L	1	/			
16		LP-100B LP-200B	2	/			
17		SGJ-3 SGJ-3B	2	/			
18		GX-12-4B GX-6B	2	/			
19		XP3500 RT820-85	5	/			
		AP3300 K1820-83	+	/			
20		/	4	/			
21		/ EED 450/400	4	/			
22		FFB450/180	2	/			
-			 				
1		1m ³	1	/			

2	5400m ³ /h 90m ²	2	/
3	$10800 \text{m}^3/\text{h} 2\text{m}^2$	1	/
4	$6600 \text{m}^3/\text{h} 2.2 \text{m}^2$	1	/
4	$14112m^3/h$ $3.4m^2$	2	/
	7#		
	SC 3		
1	2KL	3	/
2	BME-1301	3	/
3	3KL	3	/
4	BME-1302	3	/
5	15KL	4	/
3	20KL	2	/
6	2KL	3	/
7	WMSD60	9	/
8	0.5KL	6	/
9	NSQ40-PF1-S	6	/
10	CLF-159-F50P1.0	3	/
11	600mm*1300mm	3	/
12	HSG1200-1	1	/
·			
1	PVM-A200L	1	
	·		
1	LP-7B	2	/
2	/	2	/
2	DGP-Z-16D	2	/
3	CCG5000-8D	1	/
4	XG-6B	1	/
5	FXZ-C	1	/
6	FX-1	1	/
7	ZX-01	2	/
8	XJY-630	2	/
9	KX-01	2	/
10	ZX-01	2	/
11	MH-FJ-3AE	2	/
12	MH-101B	4	/
13	DZH-120	1	/
14	PW-239FM	3	/
15	/	2	/
16	/	2	/
17	/	2	/
18	GGS-240P10	1	/
19	GSL30-1L	1	/
20	JNDR50-1A-2	1	/
1	1m^3	1	/
2	5400m ³ /h 90m ²	3	/
3	19012m ³ /h 3m ²	1	/
	6600m ³ /h 2.2m ²	1	/
4	$\frac{3300 \text{ m}^{3} \text{ m}^{2} + 212 \text{ m}^{2}}{14112 \text{ m}^{3} / \text{h} + 3.4 \text{ m}^{2}}$	1	/
	11112111/11 3.1111		

		8#		
	WP		4	
		DSH-2m ³	3	/
1		DSH-3m ³	4	/
		DSH-4m ³	1	/
		DLX-2m ³	3	/
2		DLX-3m ³	1	/
		DLX-6m ³	8	/
		DLX-1m ³	9	/
3		13.5m ²	4	/
		$27m^2$	4	/
4		500 600	4	/
5		$4.5m^{2}$	8	/
6		/	12	/
7		QF348	3	/
/		QF488	1	/
8	PLC	/	4	/
0		55KW	1	/
9		110KW	2	/
		$1 \mathrm{m}^3$	1	/
10		$2m^3$	3	/
		$10m^{3}$	1	/
11		/	3	/
12		/	6	/
	WG		4	1
1		LDH-1P/C	4	
2		500L	4	
3		ZKS-4	4	_
4		1000L	4	
				1
5		ZLB2-300	6	1 WC
6		ZLB3-300	2	1 WG
7		XF	4	1111
8		FS-1.2	4	11#
9		/	5	
10		/	2	
11		LC-1m ³	7	
11		LC-3m ³	4	
12		XQCM-30	1	
	DF		1	
1		YPL3200	1	/
2		WLG-0.34*4.5	1	/
3		/	1	/
4		/	2	,
5		WIMD 50	1	/
J		WMD-50	1	
1		FJ-180L	4	/
2		MW-D129CY	2	/
3		GMB-02D	4	/
4			2	/
		/ FJ-300	2	/
5				

	· · · · · · · · · · · · · · · · · · ·		
6	/	3	/
7	DXD-180F	4	/
1	2000m ³ /h 90m ²	4	/
	9500m ³ /h 120m ²	2	/
2	15400m ³ /h 240m ²	6	/
	36000m ³ /h 5m ²	1	/
3	$\frac{36000 \text{m}^3 / \text{h}}{49000 \text{m}^3 / \text{h}} \cdot 5 \text{m}^2$	2	/
	3500m³/h	4	/
4	5000m ³ /h	2	/
-	19012m ³ /h	1	/
	10#	'	1
	3		
	_		
	2.5KL	2	/
1	1KL	4	/
2	10KL	3	/
3	10KL	3	/
4	DLX-6m ³	3	/
•	30KL	2	/
5	20KL	2	/
	10KL	3	/
6	CBF-C2-304	3	/
7	CBF-M4	9	/
8	CQB65-50-160	8	/
9	/	7	/
10	/	3	/
11	ECVS3-3	3	/
11		3	/
	EW 1 1.5KL	1	/
1	1.SKL 1KL	1	/
	3.99KL	1	/
2	1.47KL	1	/
3	20KL	2	/
4	CBF-C2-304	2	/
5	CQB50-32-160	2	/
6	СОВЗО-32-100	2	/
U	SC 2		/
1		1 2	,
1	2KL	2	/
2	3KL	2	/
3	2KL	2	/
4	0.5KL	4	/
5	60L	6	/
6	10m ³	6	/
7	1m ²	2	/
8	NSQ40-PF1-S	4	/
9	600mm*1300mm	2	/
10	5400m ³ /h 90m ²	2	/
	'	•	

1		LP-7B	4	/
2		/	4	/
3	200L	G-200L	1	/
		DGP-CZ-6	1	/
4		DGP-Z-16D	3	/
		DGP-Z-20D	1	/
5		XG-6B	3	/
6		XG-1Z	1	/
7		FXZ-C	2	/
8		XJ-1000	1	/
9		GX-6B	1	/
10		SGJ-3B	1	/
11		/	6	/
12		/	9	/
13		KX-01	5	/
14		ZX-01	3	/
15		MH-FJ-3AE	6	/
16		MH-101B	5	/
				/
17		DXD-130C	1	/
18		FFB450/180	3	/
19		/	5	/
20		/	5	/
21		/	5	/
1		1m^3	1	/
2		$19012m^3/h$ $3m^2$	1	/
2		$4100 \text{m}^3 / \text{h} 2 \text{m}^2$	1	/
		8160m ³ /h 2.3m ²	1	/
3		11000m ³ /h 3.4m ²	1	/
		14112m ³ /h 3.4m ²	1	/
		11#	<u> </u>	
	WP			
		DSH-2m ³	1	/
1		DSH-3m ³	1	/
		DLX-2m ³	1	/
2		DLX-6m ³	2	/
		DLX-1m ³	2	/
3		27m ²	1	/
4		13.5m ²	1	/
		4.5m ²	4	/
5		500	1	/
6		/	2	/
7		/	3	/
8		/	1	/
9		9500m ³ /h	1	/
	WG			
	1			
1	-	LDH-1P/C	1	/
2		500L	1	/
		300L	1	/

3	ZKS-4	1	/
4	1000L	1	/
5	ZLB2-300	2	/
6	5	1	/
7	FS-1.2	1	/
8	LC-3m ³	1	/
9	LC-1m ³	2	/
10	/	2	/
11	MC-120	1	/
12	GXF-1150	1	/
13	5000m ³ /h	1	/
	e o o o m / m	-	,
1	DXD-180D	1	/
2	APG-02B	1	/
3	4000m ³ /h 90m ²	1	/
3	+000III*/II 90III*	1	/
1	ZLFII55W-10	1	/
2	LFAD-10GW	1	/
3	C-012	2	/
	1m ³	1	/
4	$\frac{2m^3}{2m^3}$	1	/
5	1200m ³ /h 36m ²	1	/
6	15400m ³ /h 240m ²	2	/
	19012m ³ /h 3m ²	1	/
7	$42000 \text{m}^3/\text{h} 5 \text{m}^2$	1	,
	12#	1	,
	EC 2		
1	2KL	2	/
	3KL	1	/
2	5KL	1	/
2	20KL	2	/
3	10KL	2	/
4	CBF-C2-304	2	/
5	CQB50-32-160	2	/
6	NSQ40-PF1-S	4	/
7	600mm*1300mm	2	/
1	/	2	/
2	LP-200	2	/
3	CCG100-16F	2	/
4	/	2	/
5	/	2	
6	/	2	<i>,</i> /
7	TN-150	2	
8	MH-FJ-3A	2	
9	i	2	/
7	MH-102B	<u> </u>	/
1	,	2	
1	/	2	

2		3360m ³ /h 2.3m ²	1	/
		15#-1		
1		$2m^3$	6	
2		$3m^3$	7	
3		$4m^3$	1	
4		$2m^3$	6	
5		$3m^3$	1	
6		6m ³	14	
7		13.5M ²	7	
8		$27M^2$	7	
9		500	7	
10		/	7	
11		QYF400	7	
12		QYF600	7	
13	PLC		7	
14		75KW	7	
15		160KW	7	
16		$1 \mathrm{m}^3$	7	
17		/	7	
18		/	7	
19		/	7	
20		LDH-1.0	3	
21		500L	3	
22		SL20-160	3	
23		1000L	3	
24		150	3	
25		300	6	
26		500	1	
27		5000×500	3	
28		FS0.6×1.5	3	
29		$10.8M^2$	28	
30		$1 \mathrm{m}^3$	28	
31	DXD-180D	2-200g	26	
32	GD6-300	500-1000g	2	
33		TF	2	
34		TF	2	
35		TS	2	
		15#-2		
1		10KL	3	
2		3KL	3	
3		15KL	4	
4		20KL	2	
5		IH65-50-160	3	
6		$0.5M^{2}$	3	
7		TY-40A	1	
8		/	3	

9		$10.8M^2$	3	
10		LP-200B	5	-
11		/	5	-
12		CCG1000-16F	5	-
13		/	5	-
14		FX-6A	5	-
15		SGJ-2	5	-
16		DG-4000B	5	-
17		9010	5	-
\vdash		XH-1200	5	-
18			5	-
19		TN-150A	3	-
20		KZ	5	
		9#		
1		BL11-200	2	/
2		SKCW10100BR0RR	1	/
3		/	1	/
1		zlb-100	2	
2		fg-1	2	
3		zs-0.1	1	
4		rt-550	1	-
5		rtsm-0.5ad	2	-
6		/	8	-
7	20L	/	2	-
8		/	3	-
9		/	1	-
10		/	3	-
11		YQ50	1	-
12		/	1	-
13		/	2	-
14		PL-1000	1	-
15		1220	6	-
16		GC9790-	2	-
17	pН	PHS-3E	1	1
18	pri	ZSD-2	1	
19		/	1	
20			1	-
\vdash		SYD-5208D		-
21		DW-2	1	-
22		BT9300S	1	-
23		752	1	-
24		Anton Paar	1	-
25		FZX-Y	1	
26		NDJ-1	1	
27		ZXF-I	1	

4.1.6

4.1-6

/				
DA011 6#		2 1 1 15m DA011		
DA014 7#		3 1 1 15m DA014		
DA013 10#		3 2 1 20m DA013	3	
DA026 8#		2 1 1 1 25m DA026	2020	GB39727- 1
DA022 DA023 DA024 DA025		2	2.	
DA010 6#		1 20m DA010	3	
DA015 7#		1 15m DA015	2020	GB39727- 1

DA012 10#			20m DA012	3	1996	GB16297- 2
DA019		+ DA01	1 15m 9		93	GB14554- 2
					1996	GB16297- 2
					93	GB14554- 1
			/		1996	GB16297- 2
			/		93	GB14554- 1
			/		2019	GB37822- A.1
	pH SS				1996	GB8978-
	COD					/
	COD_{Cr}					/

SS TP	
pH COD _{Cr} SS	/
	GB18599- 2020
	GB18597- 2023 2013 36

4.2-1 4.2-1

4.2-1

4.2-2

4.2-1

/					
1	1	1	39.2m ²	39.2m ²	2
2		5	1219m ²	5747m	2
3		3	642m ²	1497m ²	!
6		2	3 6159.6m ²	2451m ²	
7		2	3 3878.2m ²	1457m ²	
8		4	1532m ²	6885.1r	n^2
9		1	1016m ²	1016m	2
10		2 4	30	084m ²	6848m ²
				1	000m ²
11			1992	$2m^2$	
12			1	845.5m ²	
13		2	2375.3m ²	4750.7m ²	
14		1	1700.7m ²	1700.7m ²	
15	/		210.	5m ²	
23		1	198.8m ²	198.8m ²	
24	1	180m ²	2.5		
25	2	727m ² 20% 200#	200# 1~5	1500# 70%	1~9 1500# 20% 5~9 50
26		1	33.7m ²	33.7m ²	

27	6# 7 #	1.2m ² 6# 7# 1m
28	3	15m ²
1 2		22# 1 15m ²
3		

4.3.1

4.3-1

/		/	m ²	
6#			2451	
7#	A		1457	
8#			1532	
10#	В		1016	
11#			3036	
12#	С		1992	
15#	D	/	2015	
13#	D		2375.3	

14#	D		1700.7	
23#	C		198.8	
25#	С		727	
24	С		180	
27	A	6# 7#	1.2	
28	E		15	

4.3-1

4.3.2

2025 5

/	1		
6	6# 3036m ²		
7	7# 2247m ²		
8	8# 2183m ²		

	9#			
9	1016m ²		/	
10	10# 3036m ²			
11	11# 1992m ²			
12	12# 845.5m ²			
15	15# / 2015m ²			
13	13# 2375.3m ²			
14	14# 1700.7m ²			
23	198.8m ²			
25	727m ²	9 1~9 20% 1500# 1500# 200# 200# 70% 20% 1~5 100 6~9 50 1 7		
21	33.7m ²		/	

19	180m²		
27	6# 7# 1.2m ²	6# 7#	
22	15m ²		

	5							
5.1								
						HJ	1209—2021	
					2		3	
5.2		/						
							6400m ²	
			,	5.2-1			0.100111	

5.2-2

	2.2 2				
			C	22631	
/					/
6# 7# 8# 3 A 5440m ² 6# 7# 1m 1	6# 2451m ²		533676° 310467°		
	6# 7# 1.2m ²		3071204 11507022		

7# 1457m ²	рН	N:30.633211° E:120.310488°	
8#			
1532m ²		N:30.632794° E:120.310449°	

10# 11# B	10# 2425 m ²	S-1500	рН	N:30.632118° E:120.310412°	
	11# 1554m ²			N:30.631640° E:120.310376°	

C	12# 627.2m ²		N:30.631373° E:120.310376°	
	198.8m ²		N:30.631148° E:120.310185°	

	180m²			N:30.631165° E:120.310368°	
	664m²			N:30.631309° E:120.311037°	
D 3	15# / 2015m ²	20% EDTA- Zn EDTA-Cu EDTA-Fe	рН	N:30.632769° E:120.311157°	

13# 2375.3m ²	N:30.63132030° E:120.31564238°	
14# 1700.7m ²	N:30.633191° E:120.311186°	

		S-1500 20%	S-1500		
		EDTA-Zn EDTA- Cu EDTA-Fe	EDTA-Zn EDTA- Cu EDTA-Fe		
E	15m ²			N:30.6296225° E:120.31649638°	

		pН	
	S-1500		

	20%		
	EDTA-Zn EDTA- Cu EDTA-Fe		

S-1500

20% EDTA-Zn EDTA-Cu

EDTA-Fe

6

6.1 / HJ 1209—2021

1.

2.

3.

1 1

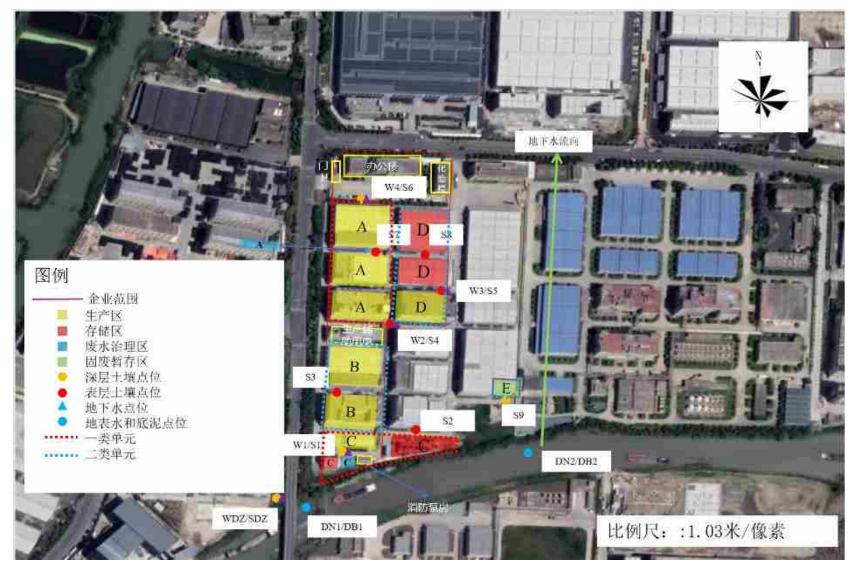
2

1

1

2

1


3

HJ610-2016 HJ964-2018 1

HJ164-2020

10 4 6 5 1 2 10%

10% 6.1-1

6.1-1

6.2-1

		1	0.2 1	
		E	N	
S1/W1	/		30.631240°	С
S2		120.310948°	30.631437°	С
S3		120.310336°	30.631879°	В
W2/S4	/	120.310970°	30.632641°	A
W3/S5	/	120.311724°	30.633008°	D D
W4/S6	/	120.310511°	30.633901°	A
S7		120.310489°	30.633055°	A
S8		120.311232°	30.633337°	D W2 W3 2
S9		120.311833°	30.631757°	1
SDZ/WDZ	/	120.309538°	30.630694°	

DN1/DB1	/	120.309888°	30.630689°
DN2/DB2	/	120.312227°	30.631315°

GB 36600-2018

GB/T 14848-2017

6.3.1

LD	DT		2023 t/a	
200-500	14-30		14.7	/
500	5-15		44.8	/
>5000	10-20		88.4	/
35	20-60	НЈ 1023-2019 НЈ 753-2015	5	1
45	30-70	НЈ 1023-2019	20	/
>5000	60-120	НЈ 1189-2021	47.3	/
156	10-30		24	/
>5000	20-40		59.2	/
25	15-40	НЈ 1023-2019 НЈ 753-2015	86.9	/
56	20-50	НЈ 753-2015 НЈ 1023-2019	60.123	1
97	100-200	HJ 1023-2019 GZ-SOP-01-021	2.5	1
>5000	30-60		97.1	/
1000-2000	<7		5	/

10	5-15		62.3	/
10	10-20	HJ 1364-2024 2025.5.1	14.441	/
>1500	60-120		67	/
>5000	70-140		15.4	/
>5000	90-180		8.05	/
>5000	60-120		79	/
>5000	<10		34	/
>5000	90-180		86	/
>5000	60-120		111	/
>5000	60-120		48	/
>5000	90-180		50	/
>5000	<7		0.2	/
>5000	<7		0.2	/
>5000	60-120		110.7	/
>5000	90-180		28.71	/
450	10-30		105.1	/
>5000	60-120		49.861	/
500	20-50		16.965	/
156	10-30		18.522	/
>5000	20-40		42.5	/
>5000	<10	НЈ 491-2019 НЈ 700-2014 НЈ 776-2015	360	/
>5000	60-120	НЈ 753-2015	225	/

. 5000				
>5000	60-120		50	/
>5000	30-60		190	/
>5000	60-120	НЈ 1189-2021	47.3	/
>5000	60-120		65.711	/
68	<10	HJ 491-2019 HJ 700-2014	282.1	/
>5000	10-30		182.551	/
>5000	30-60		17.5	/
>5000	90-180		12.5	/
1000	<10	HJ 1055-2019 HJ 1071-2019	378	/
>5000	10-30		2264.411	/
>5000	30-60	HJ 745- 2015 DZ/T 0064.52-2021 HJ 873- 2017 GB/T 7484-1987	5	/
>5000	60-120		13.8	/
>5000	30-60		5.7	/
>5000	<10	HJ 491- 2019 GB/T 11896-1989 GB/T 11896-1989	20.475	/
>5000	<10	52/1 110/0 1/0/	0.582	/
>5000	<10	HJ 491-2019 HJ 700-2014	761	/
>5000	30-60		5.5	/
2000	<7		105	/

0.1	<10	HJ 1289—2023	245.5	
2000	15-40	НЈ 753-2015 НЈ 1023-2019	7.5	/
200-500	<7		5.1	

6.3.2

6.3-2

		2023 t/a		
		15.7		/
		238.9	/	/
	D- D-	1.63	/	/
		50.5	/	/
	/	1.61	/	
	/	8.271	/	
	1	141.141		/
		0.055	/	/
	/	634.6	/	/
S-1500		2007.31		/
		23.5	/	/
		53.7	/	/

		15.5		/
	/	309.41	/	/
	/			/
	SiO2·nH ₂ O nH ₂ O	73.51	/	/
		35.6	/	/
	CHNa OS	202.8		/
		14	/	/
		687.6	/	/
	/	60.9		/
		40	/	/
	/	43	-	/
	1	50		/
	/	25	2-	1
	/	30	/	/
	1	30.72	/	/
	/	105	/	/
20%	1	100	pН	/
	/	578.25		/
EDTA-Zn	/	67.5/0 /2023		1

EDTA-Cu	1	17.5/0 /2023		/
EDTA-Fe	/	20/0 /2023		/
		2.5/0 /2023	/	/
	/	2.4/0 /2023	/	/
	1	187.5/0 /2023	рН	/
	1	187.5/0 /2023	рН	/
	/	246.6/0 /2023	/	/
	/	2652.3/0 /2023	/	/
	1	2.4/0 /2023	рН	/
	/	1189.5/0 /2023	/	/
	/	80.4/0 /2023		
	/	394.8/0 /2023	pН	/
PET	1	915.2	/	/
HDPE	/	3239	/	/
EVOH	/	86.4	/	/
	HDPE	51.8	/	/
	/	246/0 /2023	/	/

/	153.6/0 /2023	/	/
/	1516.8/0 /2023	/	/
/	125/0 /2023	/	/
/	27.5/0 /2023	/	/
/	152.5/0 /2023	/	/
/	170.4/0 /2023	/	/
/	89.7/0 /2023		/
/	288.6/0 /2023		/
/	/	/	/

- - 2- pH

6.3.3

6.3-3

0.3-3					
			COD_{cr}	CODcr	
					/

		S-1500		
		20%		
	EDTA-Zn	EDTA-Cu		
			C ₁₀ -C ₄₀	
			C10-C40	
			- - 2- pH	
			- -	
			C ₁₀ -C ₄₀	/

CODer C10-C40

C10-C40

- - 2-

pН

6.3-4

S1-S9	VOCs27	
SDZ	C10-C40 2- pH	
DN1/DN2		
W1-W4	1 35 pH	
WDZ	2 CODcr C10-C40 +	
DB1 DB2	1 21 pH 2	

- C10-C40	-	2-	

6.3-1

6.4

6.4-1

S2 S3 S4 S5 S7 S8 DN1 DN2	1 1
S1 S6 S9 SDZ	3 1
W1 W2 W4	1
W3 WDZ	1 1
DB1 DB2	1 1

7

7.1

7.1.1

1 0~0.5 m 20m

2

2.5m

2.5m-4.5m 4.5m

7.1.2

1.

HJ164-2020

2. 0.30~2.20m

2.5m 6# 7# 1m

6m

7.1-1

7.1-1

	1 0-0.5m	
S1	2 0.5-2.5	
	3 2.5-6m	
S2	1 0-0.5m	
S3	1 0-0.5m	
S4	1 0-0.5m	
S5	1 0-0.5m	
	1 0-0.5m	
S6	2 0.5-2.5	
	3 2.5-6m	
S7	1 0-0.5m	
S8	1 0-0.5m	
S9	1 0-0.5m	

	2 0.5-2.5
	3 2.5-6m
	1 0-0.5m
SDZ	2 0.5-2.5
	3 2.5-6m
DN1	/
DN2	/
W1	
W2	
W3	
W4	
WDZ	
DB1	0.5m
DB2	0.5m

7.1.3

15 4 3 1 18+2 5+1

7.2 7.2.1

7.2.2

GPS

7.2.3

7.2.3.1

HJ/T166-

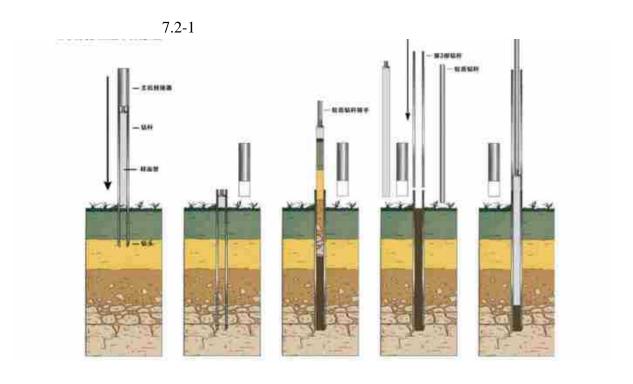
2004 4.4

7.2-1

		1	
RT	TK GPS		
X	TrueX 200S		
VOC	PGM7340		
		/	
		/	
	TN 100		
	SX836		
		-	
		-	
		,	
		/	
		/	

7.2.3.2

GP


A. 1.5m 90mm 63mm

B.

C.

D.

E.

7.2-1

7.2.3.3

1

 PID

 X
 PID
 XRF

 0-3.0m
 0.5m
 3.0m
 1m

 10m
 2m

PID VOCs VOCs

1/2~2/3

30

10 30 2 PID

1/2

XRF 20%

1cm 30-120

2

3

4 1kg 2kg

VOCs 40mL - SVOCs

7.2.3.41

PID

PID XRF

2

10% 7

1

3

4

7.2.4

6.3cm UPVC

0.5m

7.2.4.1

1m 1m

0.5m

НЈ 164-2020

7.2.4.2

8h

3 10 NTU 10NTU 1

10% 10%

pH ±0.1 **7.2.4.3**

24h

5~15min 3 7.2-2

3~5 5 7.2-2

рН	±0.1
	±0.5
	±10%
	±10mV ±10%
	±0.3mg/L ±10%
	10NTU ±10%

2h

100mL/min

10%

1

7.2.4.4

HJ 91.2-2022

10%

1

7.3

7.3.1

7.3.2

1

НЈ/Т 166-2004

2

НЈ 91.1-

2019

3

HJ 164-2020

4

HJ 91.2-2022

7.3-1~7.3-3

7.3-1

				1
рН	/	/		180d
	/	4		180d
	/	4		180d
	/	4		1d
	/	4		180d
	/	4	500ml	180d
	/	4		180d
	/	4		28d
	/	4		180d
	/	4		2d
	/	4		180d
	/	4	- 60mL 60mL 40mL	7d
		4		10d
	/			40d
C ₁₀ -C ₄₀	/	4	/	14d 40d
				7d
	/	4	500ml	40d
	/	4	500ml	7d 40d

/	4	500ml	7d 40d
/	4	500ml	7d 40d
/	4	500ml	7d 40d
/	4		7d

7.3-2

	I		1	
pН	/	/	/	
	/	/		6h
	/	/		12h
		4	1L	10d
	pH 2	4	500mL	2d
		4	500mL	10d
CaCO	pH 2	4	500mL	24h
	pH 2	4	500mL	7d
	pH 4.0 1g	4	500mL	24h
	1%	4	1L	4d
	рН 12	4	1L	24h
	2mL 1 mL 2 mL	4	200 mL	4d
	pH 12	4	500 mL	24h

	pH 2	4	500mL	30d
	pH 2	4	500mL	14d
	5mL	4	500mL	14d
	2mL	4	500mL	14d
		4	1L	30d
	pH 2	4	500mL	5d
	pH 2	4	500ml	7d
2-	80mg	4	1L	7d 40d
	25mg pH 2	4	40 mL	14d
C ₁₀ -C ₄₀	рН 2	4	1 L	14d 40d
		4	1L	7d 40d
		4	1L	7d 40d
		4	1L	7d 40d
		4	1L	7d 40d
		4	1L	7d 40d
	pH 4~9	4	1L	7d

	pH 2	4	500mL	1d
	80mg	4	1L	7d 40d
	7.3-3		•	
рН	/	/	/	
	pH<2	4	500ml	7d
	pH<2	4	500mL	1d
	pH 2	4	500ml	3d
	pH<2	4	500mL	2d
	pH<2	4	500mL	7d
	pH 4.0 1g	4	500mL	24h
	1%	4	1L	4d
	рН 12	4	1L	24h
		4	500mL	14d
	2mL 1 mL 2 mL	4	200 mL	4d
	pH<2	4	500mL	30d
	5mL	4	500mL	14d
	2mL	4	500mL	14d
		4	1L	1d
2-	80mg	4	1L	7d 40d
		4		14d

	25mg pH 2		40 mL -	
C ₁₀ -C ₄₀	pH 2	4	1 L	14d 40d
		4	1L	7d 40d
		4	1L	7d 40d
		4	1L	7d 40d
		4	1L	7d 40d
		4	1L	7d 40d
	pH 4~9	4	1L	7d
	80mg	4	1L	7d 40d

8

8.1

8.1.1

4

8.1-1

8.1-1

	0.1-1			
	10.0g	50mL		25mL
pН			2mi	n 30min
		1h		
	10.7.1.1		50mL	
	10mL 1+1		2h	50mI
	3mL 5m	nL -		50mL
	31112 311	iiL -		
		0.25 0.5g	0.0001g	
		_	6mL	3mL
	2mL			
			1	
		50 mL		
			1%	
	5.0	60 min	250 I	50.0 I
	5.0 g	0.01 g 400 mg	250 mL 0.5 mL	50.0 mL
		400 mg	0.5 IIIL	-
	5 mi	n	Ģ	90 95
	60 min			250 mL
		pH 7	.5±0.5	100 mL
	0.2~1.0g	0.0002g	50mL	_
	10mL	10I	2h	2
		10mL		

	10g		200ml 3	3.0ml
	10ml	5.0ml 100ml		
		0.25 0.5g	0.0001g	
	2mL		6mL	3mL
				1
		50 Y		
		50 mL	1%	
		60 min	1 %0	
	100	0.2g	2g	
		5.0 ml		100ml
		/	-	
	20g	1 mm		
	0.5mL	1mL	5g	
	10g	1 mm		
C ₁₀ -C ₄₀	0.5mL 10 mL	1mL.	10 mL	-
			2 mL	•
		12 m		
	20g		1.0 mL	
	-75	1 mm		
	0.5mL	1mL	5g	
		50ml	50.0ml	
		30min	5mii	
	50ml	pН	9 10min	n 50ml
	1.00ml		1.5ml	0.12
	0.2ml9-			4h
0.1.2	<u> </u>			

8.1.2

8.1-2

	0.1- 2	
рН		/
		/
		/
	250mL	15min
	100 250 1	5 mL
	100 mL 250 mL 10.0 mL	3 IIIL
	30 min	10.0 mL
CaCO		/
	250 mL 500 mL	25 mL
	250 IIIL 500 IIIL	23 mL
		250 mL
	200 7	
	200mL	5mL 200mL
		20011112
		5mL
	200mL 20mL	
	150mL	
	200mL 2m	nL 0.8mL~1mL
	pH 10.5	
	250 mL 500 mL	
	250 IIIL 500 IIIL 5 mL	50 mL
		10 mL
	3 5	2 g
		200 ml

	0.	45µm			10ml	
				10	00	
		Na	Н			
	C18 RP				5ml	
	15m	ıl	3ml			
			0.45µm			50mL
				н о		
				pH<2		
	50mL 100mL					
	1%		1	1%		
	5.0mL	10mL		1mL -		
		1h		2		
	50mL		5mL			
	10mL	5mI	ـــــــــــــــــــــــــــــــــــــ	nL 50mL	1mL	
				JUIIL		
			/			
			/			
					1. 1 kg/cm	
		120	3	30 min		
				1	.1 kg/cml	
		120	30 1	min		
		21		20. I		
		2L	5min	60mL	10min	
C ₁₀ -C ₄₀			60mL			
210 240					1000mL 1.0mL	•
	1L 2	2L			1.0IIIL	
	рН рН	11.	60mL	30	0s	10 :
			5min			10min
						250mL
2	250 1	60mL				
2-	250mI	ن	_			
		pН	2	60mL		
				25m	in	
		0.5mL	,			.0mL

10	000ml	2	L			30ml		5min
		5min						
	1n	nl				1.0ml		
10	000ml	2I				30ml		5min
		5min						
	1n	nl				1.0ml		
6ml	6m	nl						10ml
29	.3mg					3ml/min		
					2.0	0ml		
	0.50n	nl			1.00m	ı19-		
				4	.0	1h		
5ml		2min					1ml	
1L	2L					рН		pН
	1	pΗ	11		60ml			5min
10min								
	pН	pН	[2	6	0ml		
							1ml	
					1.0ml			

8.1.3

8.1-3

pН			/	
pm			/	
				kg/cml
		120	30 min	
			111 /	1
			1.1 kg/cm	1
		120	30 min	
	100.0mL			
	100mL	250mL	5 0.5mL	
	10.00mL		30	2 min
	250 mL	500 mL	25 mL	
			250 mL	
	10mL		7-8	
	5mL			
			2mL/min 4	lmI /min

	200 ml	
	200mL 5mL	200mL
	5mL 200mL 20mL 150mL	
	200mL 2mL pH 10.5	0.8mL~1mL
	0.45μm	50mL
	pH<2 5.0mL 10mL 1mL - 1h 2	
	50mL 5mL 1mL 1mL 50mL	
	/	
	1L 2L pH pH 11. 60mL 30s 5min	10min
2-	60mL 250mL	250mL
	pH 2 60mL 25min 0.5mL	1.0mL

		2L			60	mL		
				5min			10min	
C ₁₀ -C ₄₀				60mI	_			
210 240							1000mI	
							1.0mL	
	10001		2L		30	ml		5min
		5r	nin					
		1ml			1	.0ml		
	1000ı		2L		30	ml		5min
		5r	nin					
		1ml			1	.0ml		
	6ml	6ml						10ml
	29.3m	ng				3ml/mi	n	
					2.00m			
	().50ml			1.00ml9			
				40		1h		
	5ml	2m	in				1ml	
	1L 2	LL.				pН		pН
		pН	11		60ml			5min
	10min							
	pl	Η	pН	2	60m	1		
							1ml	
					1.0ml			

8.2

! ~!

! .2-1

рН	pH HJ 962- 2018	pH FE28		/
	2 GB/T 22105.2-2008	BAF-2000	mg/k g	0.01
	GB/T 17141-1997	Agilent 240Z	mg/k g	0.01
	- НЈ 1082-2019	AA-6880F	mg/k g	0.5

	НJ 491- 2019	Agilent 240FS	mg/k g	1
	НJ 491- 2019	Agilent 240FS	mg/k g	1
	GB/T 17141-1997	Agilent 240Z	mg/k g	0.1
	1 GB/T 22105.1-2008	BAF-2000	mg/k g	0.00
	НЈ 491- 2019	Agilent 240FS	mg/k g	3
	НЈ 873-2017	PXSJ-216F	mg/k	63
	НЈ 745-2015	L6S	mg/k	0.04
C ₁₀ -C ₄₀	C ₁₀ -C ₄₀ - HJ 1021-2019	Agilent 8890	mg/k	6
2- [a]			mg/k g mg/k g mg/k g mg/k g mg/k g	0.1 0.06 0.09 0.09
[b] [k] [a] [1 2 3-cd] [a h]	- НЈ 834-2017	Agilent 8890- 5977B	mg/k g mg/k g mg/k g mg/k g mg/k g mg/k g	0.1 0.2 0.1 0.1 0.1

1 2 3-			mg/k	0.00
			g	12
1 4-			mg/k	0.00
1 4-			g	15
1 2-			mg/k	0.00
1 2-			g	15
			mg/k	0.3
			g	0.5
			mg/k	0.2
			g	- · · <u>-</u>
	47	Agilent 8890-	mg/k	0.2
	-	5977B	g	
	НЈ 1023-2019	0,772	mg/k	0.4
			g	
			mg/k	0.8
			g	
			mg/k	
		Agilent 1260	g	0.02
	НЈ 1055-2019	11511011t 1200	D	

!

рН	рН НЈ 962-2018	pH FE28		/
	/ НЈ 680-2013	BAF-2000	mg/kg	0.01
	GB/T 17141-1997	Agilent 240Z	mg/kg	0.01
	- НЈ 1082-2019	AA-6880F	mg/kg	0.5
	НЈ 491- 2019	Agilent 240FS	mg/kg	1
	GB/T 17141-1997	Agilent 240Z	mg/kg	0.1
	/ НЈ 680-2013	BAF-2000	mg/kg	0.002
	НЈ 491- 2019	Agilent 240FS	mg/kg	3

	НЈ 873-2017	PXSJ-216F	mg/kg	63
	НЈ 745-2015	L6S	mg/kg	0.04
C ₁₀ -C ₄₀	C ₁₀ -C ₄₀ HJ 1021-2019	Agilent 8890	mg/kg	6
			mg/kg	0.1
2-			mg/kg	0.06
			mg/kg	0.09
			mg/kg	0.09
[a]			mg/kg	0.1
			mg/kg	0.1
[b]	111 924 2017	Agilent 8890- 5977B	mg/kg	0.2
[k]	- НЈ 834-2017	397713	mg/kg	0.1
[a]			mg/kg	0.1
[1 2 3- cd]			mg/kg	0.1
[a h]			mg/kg	0.1
2-			mg/kg	0.08
			mg/kg	0.001
		/	mg/kg	0.001
1 1-		/	mg/kg	0.001
	/ - HJ 605- 2011	AtomxXYZ/ Agilent 8890-	mg/kg	0.001
-1 2-		5977B	mg/kg	0.001 4
1 1-			mg/kg	0.001
-1 2-			mg/kg	0.001
		/	mg/kg	0.001
1 1 1-	/ - НЈ 605-	AtomxXYZ/	mg/kg	0.001
	2011	Agilent 8890- 5977B	mg/kg	0.001
		שווקט	mg/kg	0.001 9
1 2-			mg/kg	0.001

			<u> </u>	0.001
			mg/kg	2
1 2-			mg/kg	0.001
			mg/kg	0.001
1 1 2-			mg/kg	0.001
			mg/kg	0.001
			mg/kg	0.001
1 1 1 2-			mg/kg	0.001
			mg/kg	0.001
-			mg/kg	0.001
-			mg/kg	0.001
			mg/kg	0.001
1 1 2 2-			mg/kg	0.001
1 2 3-			mg/kg	0.001
1 4-			mg/kg	0.001 5
1 2-			mg/kg	0.001
			mg/kg	0.3
			mg/kg	0.2
	47 -	Agilent 8890-	mg/kg	0.2
	НЈ 1023-2019	5977B	mg/kg	0.4
			mg/kg	0.8
	НЈ 1055-2019	Agilent 1260	mg/kg	0.02
	! 8.2-3			
	4	/		/
	- DZ/T 0064.4-2021 4			
	GB/T 5750.4-2023	/	/	/
_				

			TN	NTU	0.3
	НЈ 1075-2019	4	100	1,10	0.5
		GB/T	/	/	/
	5750.4-2023				
pН	pН НJ 1147-2020		SX 836		/
		DTA	25mL		
CaCO ₃	GB/T 7477-1987		231112	mg/L	5
	9) // (
		_	ML- 204T	mg/L	4
	DZ/T 0064.9-202	1	-		
	НЈ/Т 342	2007		mg/L	2
	ПЈ/1 342	2-2007	752		
	GB/T 11896-1989)	/	mg/L	/
	32				
	776-2015	HJ	Agilent 5800	mg/L	0.01
	32		Agnent 3800		
	77.4 004.5	HJ		mg/L	0.01
	776-2015 65		Agilent 5800		
		НЈ 700-	Agilent	μg/L	0.08
	2014 65		7850		
	03	НЈ 700-	Agilent	μg/L	0.67
	2014		7850		
	32	НЈ		mg/L	0.009
	776-2015	-	Agilent 5800		
	4-	НЈ		mg/L	0.000
	503-2009	113	L6S	mg/L	3
	(D) /T: 1	7404 1007	1.40	mg/L	0.05
	GB/1 /	7494-1987	L6S		
			25mL	mg/L	0.1
	DZ/T 0064.68-202	21			
			L6S	mg/L	0.025
	НЈ 535-2009		LOS		
			· -~	mg/L	0.003
	НЈ 1226-2021		L6S		
	32	НЈ		mg/L	0.03
	776-2015	113	Agilent 5800	mg/L	0.03

	GB/T 7493-1987	752	mg/L	0.003
	НЈ/Т 346-2007	752	mg/L	0.08
	52 - DZ/T 0064.52-2021	L6S	mg/L	0.002
	GB/T 7484-1987	PXSJ-216	mg/L	0.05
	НЈ 778-2015	IC-20	mg/L	0.002
	НЈ 694-2014	BAF-2000	μg/L	0.04
	НЈ 694-2014	BAF-2000	μg/L	0.3
	НЈ 694-2014	BAF-2000	μg/L	0.4
	65 НЈ 700- 2014	Agilent 7850	μg/L	0.05
	17 DZ/T 0064.17-2021	L6S	mg/L	0.004
	65 НJ 700- 2014	Agilent 7850	μg/L	0.09
	НЈ 828-2017	25mL	mg/L	4
	НЈ 636-2012	L6S	mg/L	0.05
C ₁₀ -C ₄₀	С ₁₀ -С ₄₀ НЈ 894-2017	Agilent 8890	mg/L	0.01
			μg/L	1.4
			μg/L	1.5
		/	μg/L	1.4
	/ НЈ 639-2012	AtomxXYZ/ Agilent 8890-	μg/L	1.4
-	11J U37-2U12	5977B	μg/L	2.2
-			μg/L	1.4
			μg/L	0.6

2-	/ - GZ- SOP-01-002	Agilent 8890- 5977B	μg/L	1.0
			μg/L	0.005
			μg/L	0.005
		Agilent 8890-	μg/L	0.03
	- НЈ 753-2015	5977B	μg/L	0.05
			μg/L	0.04
	НЈ 1071-2019	Agilent 1260	μg/L	2
	GB/T 11893-1989	L6S	mg/L	0.01
	- / GZ-SOP-01-021	Agilent 8890- 5977B	μg/L	1.0

8.2-4

	рН	HJ 1147-			
pН	2020		SX 836		/
	!		L6S	mg/L	0.05
	НЈ 636-2012		200		
	65	111 700	A '1	~/ī	0.08
	2014	НЈ 700-	Agilent 7850	μg/L	0.08
	65		7030		
		НЈ 700-	Agilent	μg/L	0.67
	2014		7850		
				OT.	0.000
	2009	HJ 503-	L6S	mg/L	3
	2009				
	GB/T 7494-1987		L6S	mg/L	0.05
			25mL		0.1
	GB/T 11892-1989			mg/L	0.1
				_	
	111.525.2000		L6S	mg/L	0.025
	НЈ 535-2009				
				mg/L	0.003
	НЈ 1226-2021		L6S		3.000

	GB/T 11893-1989	L6S	mg/L	0.01
	НЈ 484-2009	L6S	mg/L	0.004
	Br NO ₃ PO ₄ SO ₃ SO ₄ SO ₄ HJ 84-2016	ECO- IC	mg/L	0.006
	НЈ 694-2014	BAF-2000	μg/L	0.04
	НЈ 694-2014	BAF-2000	μg/L	0.3
	НЈ 694-2014	BAF-2000	μg/L	0.4
	65 НJ 700 2014	- Agilent 7850	μg/L	0.05
	GB/T 7467-1987	L6S	mg/L	0.004
	65 HJ 700 2014	- Agilent 7850	μg/L	0.09
	HJ 828-2017	50mL /	mg/L	4
	ВОD ₅ НЈ 505-2009	JPSJ-605F	mg/L	0.5
	НЈ 970-2018	L6S	mg/L	0.01
2-	/ - GZ-SO 01-002	P- Agilent 8890- 5977B	μg/L	1.0
-		/	μg/L	2.2
-	/ - HJ 639 2012	AtomxXYZ/Agilent	μg/L	1.4
		8890-5977B	μg/L	0.6
C ₁₀ -C ₄₀	C ₁₀ -C ₄₀ HJ 894-2017	Agilent 8890	mg/L	0.01
	- НЈ 753-201.	Agilent 8890- 5977B	μg/L	0.005
	- НЈ 753-2015	Agilent 8890- 5977B	μg/L	0.005

- НЈ 753-2015	Agilent 8890- 5977B	μg/L	0.03
- НЈ 753-2015	Agilent 8890- 5977B	μg/L	0.05
- НЈ 753-2015	Agilent 8890- 5977B	μg/L	0.04
НЈ 1071-2019	Agilent 1260	μg/L	2
- / GZ-SOP-01-021	Agilent 8890- 5977B	μg/L	1.0

8.3

8.3.1

GB36600-2018

GB36600-2018 DB33/T

892—2022 A.2 EPA

8.3-1

				GB36600-2018
				mg/kg
рН	рН НЈ 962-2018		/	/
	GB/T 22105.2-2008	mg/kg	0.01	60
	GB/T 17141-1997	mg/kg	0.01	65
	- НЈ 1082-2019	mg/kg	0.5	5.7
	НЈ 491-2019	mg/kg	1	10000 ^b
	НЈ 491-2019	mg/kg	1	18000

		mg/kg	0.1	800
	GB/T 17141-1997	mg/kg	0.1	800
	1	mg/kg	0.002	38
	GB/T 22105.1-2008			
		mg/kg	3	900
	НЈ 491-2019			
		mg/kg	63	10000 ^b
	НЈ 873-	mg/kg	03	10000
	2017			
		mg/kg	0.04	135
	НЈ 745-2015		5.5	
	C ₁₀ -			
C_{10} - C_{40}	C_{40} HJ	mg/kg	6	4500
	1021-2019	71	0.1	260
2		mg/kg	0.1	260
2-		mg/kg mg/kg	0.06	2256 76
		mg/kg	0.09	70
[a]		mg/kg	0.1	15
[]		mg/kg	0.1	1293
[b]	-	mg/kg	0.2	15
[k]	НЈ 834-2017	mg/kg	0.1	151
[a]		mg/kg	0.1	1.5
[1 2 3-cd]		mg/kg	0.1	15
[a h]		mg/kg	0.1	1.5
2-	- НЈ 834- 2017	mg/kg	0.08	4.1E+03 ^a
	<u> </u>	mg/kg	0.0010	37
		mg/kg	0.0010	0.43
1 1-		mg/kg	0.0010	66
	_	mg/kg	0.0015	616
-1 2-	НЈ 605-2011	mg/kg	0.0014	54

1 1-		mg/kg	0.0012	9
-1				
2-		mg/kg	0.0013	596
		mg/kg	0.0011	0.9
1 1 1-		mg/kg	0.0013	840
		mg/kg	0.0013	53
		mg/kg	0.0019	4
1 2-		mg/kg	0.0013	5
		mg/kg	0.0012	2.8
1 2-		mg/kg	0.0011	5
		mg/kg	0.0013	1200
1 1 2-		mg/kg	0.0012	2.8
		mg/kg	0.0014	53
		mg/kg	0.0012	270
1 1 1 2-		mg/kg	0.0012	10
		mg/kg	0.0012	28
-		mg/kg	0.0012	570
-		mg/kg	0.0012	640
		mg/kg	0.0011	1290
1 1 2 2-		mg/kg	0.0012	6.8
1 2 3-		mg/kg	0.0012	0.5
1 4-		mg/kg	0.0015	20
1 2-		mg/kg	0.0015	560
		mg/kg	0.3	/
		mg/kg	0.2	1.5E+04 ^a
	47 -	mg/kg	0.2	3.1E+03 ^a
	НЈ 1023-2019	mg/kg	0.4	1.5E+04 ^a
		mg/kg	0.8	/
	НЈ 1055-2019	mg/kg	0.02	6.2E+04 ^a
a	EPA DB33/T 892—20	22 A.2	b	

8.3.2

GB/T 14848-2017

GB 3838-2002

GB/T 14848-2017

[2020]62 " 5

,,

8.3-2

	0.3-4	1		1
	- DZ/T 0064.4-2021		/	25
	4 GB/T 5750.4-2023	/	/	
	НЈ 1075-2019	NTU	0.3	10
	4 GB/T 5750.4-2023	/	/	
рН	рН НЈ 1147-2020		/	5.5~6. 5 8.5~9.
CaCO ₃	EDTA GB/T 7477-1987	mg/L	5	650
	9 DZ/T 0064.9-2021	mg/L	4	2000
	НЈ/Т 342-2007	mg/L	2	350
	GB/T 11896-1989	mg/L	/	350
	32 HJ 776- 2015	mg/L	0.01	2
	32 HJ 776- 2015	mg/L	0.01	1.5
	65 НЈ 700-2014	μg/L	0.08	1500
	65 НJ 700-2014	μg/L	0.67	5000

		1	
32 HJ 776- 2015	mg/L	0.009	0.5
4- НЈ 503-2009	mg/L	0.0003	0.01
GB/T 7494-1987	mg/L	0.05	0.3
68 DZ/T 0064.68- 2021	mg/L	0.1	10
НЈ 535-2009	mg/L	0.025	1.5
НЈ 1226-2021	mg/L	0.003	0.1
32 HJ 776- 2015	mg/L	0.03	400
GB/T 7493-1987	mg/L	0.003	4.8
НЈ/Т 346-2007	mg/L	0.08	30
52 - DZ/T 0064.52-2021	mg/L	0.002	0.1
GB/T 7484-1987	mg/L	0.05	2
НЈ 778-2015	mg/L	0.002	0.5
НЈ 694-2014	μg/L	0.04	2
НЈ 694-2014	μg/L	0.3	50
НЈ 694-2014	μg/L	0.4	100
65 НJ 700-2014	μg/L	0.05	10
DZ/T 0064.17-2021	mg/L	0.004	100
65 НJ 700-2014	μg/L	0.09	100
НЈ 828-2017	mg/L	4	/
НЈ 636-2012	mg/L	0.05	/
C ₁₀ -C ₄₀ C ₁₀ -C ₄₀ HJ 894-2017	mg/L	0.01	1.2ª
	μg/L	1.4	300

	/ -	μg/L	1.5	50
	НЈ 639-2012	μg/L	1.4	120
		μg/L	1.4	1400
-		μg/L	2.2	1000
-		μg/L	1.4	1000
		μg/L	0.6	40
2-	/ - GZ-SOP-01- 002	μg/L	1.0	/
		μg/L	0.005	150
		μg/L	0.005	/
	- НЈ 753-2015	μg/L	0.03	/
	120,000,2010	μg/L	0.05	/
		μg/L	0.04	/
	НЈ 1071-2019	μg/L	2	1400
	GB/T 11893-1989	mg/L	0.01	/
	- / GZ-SOP-01-021	μg/L	1.0	/
5	" b	[2020 GB 383		"

8.3.3

GB 3828-2002

8.3-3

	0.5-5				
рН	pН	НЈ 1147-2020		/	6~9
	НЈ	636-2012	mg/L	0.05	1.0
	65	НЈ 700-2014	μg/L	0.08	1000

	65 HJ 700-2014	μg/L	0.67	1000
	4- НЈ 503-2009	mg/L	0.0003	0.005
	GB/T 7494-1987	mg/L	0.05	0.2
	GB/T 11892-1989	mg/L	0.1	6
	НЈ 535-2009	mg/L	0.025	1.0
	НЈ 1226-2021	mg/L	0.003	0.2
	GB/T 11893-1989	mg/L	0.01	0.2
	НЈ 484-2009	mg/L	0.004	0.2
	F- Cl- NO ₂ - Br- NO ₃ - PO ₄ ³ - SO ₃ ² - SO ₄ ² - HJ 84-2016	mg/L	0.006	1.0
	НЈ 694-2014	μg/L	0.04	1
	НЈ 694-2014	μg/L	0.3	50
	НЈ 694-2014	μg/L	0.4	10
	65 НJ 700-2014	μg/L	0.05	5
	GB/T 7467-1987	mg/L	0.004	50
	65 HJ 700-2014	μg/L	0.09	50
	НЈ 828-2017	mg/L	4	20
	ВОD ₅ НЈ 505-2009	mg/L	0.5	4
	НЈ 970-2018	mg/L	0.01	0.05
2-	/ - GZ-SOP-01-002	μg/L	1.0	/
-		μg/L	2.2	/
-	/ - НЈ 639-2012	μg/L	1.4	/
		μg/L	0.6	/
C ₁₀ -C ₄₀	С ₁₀ -С ₄₀ НЈ 894-2017	mg/L	0.01	/

- НЈ 753-2015	μg/L	0.005	/
- НЈ 753-2015	μg/L	0.005	/
- НЈ 753-2015	μg/L	0.03	/
- НЈ 753-2015	μg/L	0.05	/
- НЈ 753-2015	μg/L	0.04	/
НЈ 1071-2019	μg/L	2	/
- / GZ-SOP-01-021	μg/L	1.0	/

8.4

8.4.1

8.4-1 2025

pН	()	6.65~6.97	/	/
	(mg/kg)	351~581	10000	/
	(mg/kg)	0.04~0.25	65	/
	(mg/kg)	7.4~28	800	/
	(mg/kg)	1.49~25.4	60	/
	(mg/kg)	0.022~0.395	38	/
	(mg/kg)	32~71	900	/
	(ng/kg)	14~46	18000	/
	(mg/kg)	36~104	10000	/
C ₁₀ -C ₄₀	(mg/kg)	6~34	4500	/
[a]	(mg/kg)	ND~1.31	1.5	

2025

pH 6.65~6.97

2025

GB36600-2018

DB33 T892-2022

8.4.2

8.4-2 2025

рН	()	6.75~6.82	/	/
	(mg/kg)	507~512	10000	/
	(mg/kg)	0.59~2.08	65	/
	(mg/kg)	11.5~14.3	800	/
	(mg/kg)	9.04~9.94	60	/
	(mg/kg)	0.111~0.301	38	/
	(mg/kg)	28~38	900	/
	(mg/kg)	39~55	18000	/

	(mg/kg)	82~119	10000	/
C_{10} - C_{40}	(mg/kg)	33~42	4500	/

pН

6.75~6.82

2025

GB36600-2018

DB33 T892-2022

8.4.3

8.4-3 2025

рН		7.3~8.3	5.5~6.5 8.5~9.0	3
	NTU	38~70	10	W1~4 WDZ
	mg/L	19.2~58.6	/	/
	mg/L	1.19~7.58	1.5	W1 W2 W4
	mg/L	2.01~8.1	/	/
	mg/L	ND~0.331	/	/
	mg/L	0.0012~0.0021	0.01	/
	mg/L	ND~0.183	0.3	/
Cl ⁻	mg/L	19.6~64.2	350	/
SO ₄ ² -	mg/L	16.2~278	350	/
	mg/L	0.29~0.88	30	/
	mg/L	0.003~0.065	4.8	/
	mg/L	0.34~0.95	2	/
	mg/L	233~430	650	/
	mg/L	0.02~1.42	1.5	/
	mg/L	0.06~0.7	2	/
	mg/L	4.1×10 ⁻³ ~0.038	0.05	/
	mg/L	5.38× 10 ⁻⁵ ~ 0.00162	0.002	/
	mg/L	ND~6.8× 10 ⁻⁴	0.1	/
	mg/L	ND~1.6× 10 ⁻³	0.05	/
	mg/L	218~660	2000	/
	mg/L	2.5~5.4	10	/
	mg/L	3.16~88.5	400	/

		5~10	25	/
	mg/L	0.042~0.114	0.5	/
C ₁₀ ~C ₄₀	mg/L	0.04~0.13	1.2	/

GB/T14848-2017

IV

2020

62

1

2

8.4.4

8.4-3 2025

	7 2025			
pН		7.2~7.3	6~9	/
	NTU	15~16.7	20	/
	mg/L	0.865~0.914	1.0	/
	mg/L	0.13~0.17	0.2	/
BOD	mg/L	3.3~3.6	4	/
	mg/L	0.9~0.94	1.0	/
	mg/L	0.0014~0.0017	0.005	/
	mg/L	3.5~3.8	6	/
	mg/L	0.32~0.42	1.0	/
	mg/L	3.4×10 ⁻³ ~5.1×10 ⁻³	0.05	/
	mg/L	7.60× 10 ⁻⁵ ~7.64× 10 ⁻⁵	0.0001	/
	mg/L	4.0× 10 ⁻⁴ ~4.9× 10 ⁻⁴	0.001	/

C ₁₀ ~C ₄₀	mg/L	0.06~0.13	/	/
----------------------------------	------	-----------	---	---

GB 3828-2002

9.1

CMA

НЈ/Т 166-2004

НЈ 164-2020

HJ 25.2-2019

9.2

HI251-2019

HI252-2019 HJ1209-

2021

9.3

9.3.1

(НЈ

25.1-2019) (HJ 25.2-2019)

1 /

VOCs SVOCs

4

5

GPS PID XRF

PID XRF

9.3.2

/

9.3.3

(HJ/T 166-2004) (HJ 164-2020) HJ 91.1-2019 (HJ 91.2-2022)

1

(HJ 25.2-2019)

2

VOCs

VOCs SVOCs

1kg 2kg

VOCs 40mL -

pH SVOCs

pH

4

5

9.3.4

10%

HJ 25.2-2019

2 4

<4
7.3-1~7.3-3

9.3.520 1
1 1

9.3.5.1

20 1

9.3.5.2 a

98%

b

5

r 0.999

c 20

10% 20%

9.3.5.3

5% 20 1

A B RD

RD (%) = $\frac{|A-B|}{A+B} \times 100$

A+B A

В

1 2 3 4

合格率 (%) = |合格样品数| × 100

95%

95%

5% 15% 95%

9.3.5.4

a

5%

20 1

x (μ)

RE RE

 $RE(\%) = \frac{x - \mu}{\mu} \times 100$

RE

100%

b)

5

20

0.5 1.0 2 3

100%

9.3.5.5

10.1

2025 pH 6.65~6.97

2025

GB36600-2018

DB33 T892-2022

2025 pH 6.75~6.82

2025

GB36600-2018

DB33 T892-2022

2025

GB/T14848-2017 IV

2020 62

2025

GB 3838-2002

10.2

10.2.1

10.2.2

HJ1209—2021

				C2631	
	/				/
A	6# 7# 8# 3 5440m ² 6# 7# 1m 1	6# 2451m ²	N:30.6 E:120.3	33676° 310467°	
		6# 7# 1.2m ²	N:30.63 E:120.3	3071204 1507022	

7# 1457m²	рН	N:30.633211° E:120.310488°	
8# 1532m ²		N:30.632794° E:120.310449°	

10# 11# B	10# 2425 m ²	S-1500	рН	N:30.632118° E:120.310412°	
	11# 1554m ²			N:30.631640° E:120.310376°	

C	12# 627.2m ²	N:30.631373 ° E:120.310376 °	
	198.8m ²	N:30.631148° E:120.310185°	

		180m ²			N:30.631165° E:120.310368°	
		664m ²			N:30.631309° E:120.311037°	
D	3	15# / 2015m ²	20% EDTA- Zn EDTA-Cu EDTA-Fe	рН	N:30.632769° E:120.311157°	

13# 2375.3m ²	N:30.63132030° E:120.31564238°	
14# 1700.7m ²	N:30.633191° E:120.311186°	

		S-1500 20% EDTA-Zn EDTA-Cu EDTA-Fe	S-1500 20% EDTA-Zn EDTA-Cu EDTA-Fe		
E	15m ²			N:30.6296225° E:120.31649638°	

		рН	
	S-1500		

	20%		
	EDTA-Zn EDTA- Cu EDTA-Fe		

(6) 报告编号: HJ251640

第1页共15页

检验检测报告

报告编号: HJ251640

项目名称

浙江威昇作物科技有限公司 2025年土壤及地下水自行

委托单位

浙江威昇作物科技有限公司

湖州中一检测研究院有限公司

检测声明

- 1、本报告无本公司检验检测专用章及骄维章均无效。
- 未经本公司书面允许,本报告不得部分复印;本报告经部分复印,未加盖本公司检验 检测专用章无效。
- 3、本报告内容需填写齐全, 无本公司审核人、批准人签名无效。
- 4、本报告内容需填写清楚,经涂改、增删均无效。
- 5、本报告未经本公司书面同意,不得用于广告、商品宣传等商业行为。
- 6、本报告仅对本次采样样品的检测结果负责。
- 7、委托方若对本报告有异议,请于收到报告之日起15天内向本公司联系。

机构通讯资料:

电话: 0572-2619111 传真: 0572-2612266

阿加: www.zyjchz.com.cn Email: hzzy@zynb.com.cn

	检 测	说明	
受檢単位	浙江威昇作物科技有限公司	采样地址	游江省提州市德濟吳新市镇三斯组 8号
委托单位	浙江城界作物科技有限公司	委托单位地	址 新红省凝州市德清里新市镇三新社 8 号
联系人/联系方式	高先生/15257242715	检测方案编	号 FA251640
样品类别	地表水、地下水、土壤、底泥	检测类别	委托抢测
采样日期	2025-08-27。 2025-09-02~2025-09-03	检测日期	2025-08-27-2025-09-19
检测地址	浙江省湖州市红丰路 1366 号 6 制 浙江省湖州市總清县新市镇三新		210
深样方法	地表水环境质量监测技术频准 H 地下水环境监测技术规范 HJ/T166 水质 采样技术担碍 HJ/494-2009	4-2020 -2004	
檢測项目	检测依据		主要分析仅器设备及型号
pH 值	水质 pH 值的测定 电极法 HJ T	147-2020	便換式电化準仪表 SX836
更氮	水质 氨氮的测定 纳氏试剂分光 HJ 535-2009	光度法	可见分光光度计 722S
益補	水质 总辖的测定 目體铵分允光 GB/T 11893-1989	度法	可见分光光度计 L3S
五日生化居氧量 (BODs)	水頭 五日生化器執着 (BOD ₂) 与接种法 HJ 505-2009	的煞定 稀粹	生化培养箱 SPX-250B-Z 溶解氧测定仪 Oxi7310
石油类	水质 石油类的就定 紫外分光光 HI 970-2018	度法(试行)	紫外再见分光光度计 TU-1810PC
总组	水质 总氮的测定 碱性过硫酸钾 光光度法 HJ 636-2012	滑解紫外分	紫外可见分光光度计 TU-1810PC
化学需氧量	水质 化学需氧量的测定 快速消 法 HJ/T 399-2007	解分允先度	多参数水质分析仪 GL-660
阴离子表面钙性刺	水质 阴离子表面活性剂的测定 光度法 (TB/T 7494-1987	亚甲蓝分光	可见分光光度计 N2
挥发酚	水质 挥发酚的测定 4-氢基安替度法 HJ 503-2009	比林分光光	可见分光光度计 7228
高锰硬盐指数	水质 高锰酸盐指数的规定 GB/T	11892-1989	酸式請定營 25mL
氨离子(CI)	水质 无机阴离子 (F、CF、NOz PO2、80字、80字) 的測定 高 HJ 84-2016		离子色谱仪 CIC-D120

檢測項目	检测依据	主要分析仪器设备及型号
硫酸根(SOさ)	水炭 无机阱离子 (F、Ch、NOr、Br、NOr、 POF、SOF、SOF) 約拠定 离子色谱法 HJ 84-2016	离子色谱仪 CIC-D120
硝酸盐氮	水质 磷酸盐氮的测定 紫外分光光度法(试 行) HJ/T 346-2007	紫外可见分光光度计 TU-1810PC
业利較益氮	水质 亚硝酸盐氮的製定 分光光度法 GB/T 7493-1987	可是分充光度计 N2
氮化物	水质 氟化物的测定 离子选择电极法 GB/T 7484-1987	离子计 PXSJ-216F
硫化物	水质 硫化物的测定 亚甲基蓝分光光度法 HJ 1226-2021	可见分先光度计 722S
氰化物	水质 氰化物的测定 容量法和分元光度法 HJ 484-2009	可见分光光度计 7228
总硬度 (劉和镁总量)	水质 钙科镁总量的测定 EDTA 滴定法 GB(T 7477-1987	酸式滴定管 50mL
六价铬	水质 六价铬的测定 二苯磺酰二肼分光光度 法 GB/T 7467-1987	可见分充光度计 N2
329	水质 铁、锰的测定 火焰原子吸收分光光度法 GB/T 11911-1989	原子吸收分光光度计 TAS-990F
鉄	水质 铁、锰的测定 火焰原子吸收分光光度法 GB/T 11911-1989	原子吸收分光光度计 TAS-990F
40	水质 弱、铈、铀、镉的测定 原子吸收分光光 度法 GB/T 7475-1987	原于吸收分光光度计 TAS-990F
件	水质 铜、锌、铂、镉的测定 原子吸收分光光 度法 GB/T 7475-1987	原子吸收分光光度计 TAS-990F
总种	水质 汞、柿、硒、铋和铼的测定 原子荧光法 HJ 694-2014	原子荧光光度计 AFS-11A
总束	水质 景、神、佰、铋和锡的测定 原子炭光法 HJ 694-2014	原子荧光光度计 AFS-11A
总链	水质 录、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014	原子类先光度计 AFS-11A
傷	石思炉原子吸收分光光度往《水和废水监测分 折方法》(第四版增补版) 国家环境保护总 局(2002年) 3.4.7.4	石墨炉票子吸收光谱仪 240Z AA
40	石墨炉原子吸收分光光度法《水和废水监测分析方法》(第四板增补预) 国家环境保护总 成《2002年》3.4.7.4	右墨炉原子吸收光谱仪 240Z AA
浊度	水质 独度的测定 独度计法 HJ 1075-2019	独度计 WGZ-3B
磷酸盐	水质 磷酸盐的测定 离子色谱法 HJ 669-2013	离子色谱仪 PIC-10

检测项目	检測依据	主要分析仪器设备及型号
96. W	水质 32 种元素的制定 电邮耦合等离子体发 射充谱法 HJ 776-2015	电感耦合等离子体发射光谱仪 AVE 200
氰化物	乘下水類分析方法第 52 部分。氰化物的测定 吡啶-吡唑啉酮分光光度法 DZ/T 0064.52-2021	可见分光光度计 7228
答解性固体心量	地下水质分析方法 第9部分:溶解性固体总量的裸定 重量法 DZ/T 0064,9-2021	电子天平 321LS220A 电杨数风干燥箱 GZX-9140MBE
耗氣量	地下水质分析方法第 68 部分, 純氧量的测定 服性离锰酸钾清定法 DZ/T 0064,68-2021	版式清空管 25mL
色度	地下水质分析方法 第 4 部分: 色度的测定 铂 - 钻标准比色法 DZ/T 0064.4-3021	具寒比色管 50mL
六价铬	地下水质分析方法 第 17 部分;总等和六价格 量的制定 二苯砜第二肼分光光度法 DZ/T 0064.17-2021	可见分先先度ii N2
碘化物	地下水质分析方法 第 56 部分; 确化物的测定 试粉分光无度法 DZ/T 0064.56-2021	可见分壳光度计 N2
可萃取性石油烃 (Cur-Cas)	水原 可萃取性石油炉 (Cm-Car) 的测定 气 相色谱法 HJ 894-2017	气相色谱仪 GC2030
pH 倍	土壤 pH 值的测定 电位法 HJ 962-2018	pH 计 PHS-3E 电子天平 YP802N
机化物	土油质量 氟化物的制定 离子选择电极法 GB/T 22104-2008	离子计 PXSJ-216F
六价格	土壤和沉积物 六价格的概定 碳溶液提取-火 增原子吸收分光光度法 H3 1082-2019	原子吸收分光光度计 TAS-990F
苯胺	血散废物鉴别标准 浸出毒性鉴别 GB 5085.3-2007	气相色谱质谱联用仪 GCMS-QP202
625	土壤质量 船、镉的渊定 石墨炉原子吸收分先 光度法 GB/T 17141-1997	石墨炉准子吸收光谱仪 240Z AA
飿	土壤质量 船、器的测定 石墨炉原子吸收分光 光度法 GB/T 17141-1997	石墨炉原子吸收光碧仪 2402 AA
草朝	土壤质量 总表。总碑、总铝的测定 原于荧光 法 第2 都分;土壤中总砷的测定 GB/T 22105.2-2008	順子荧光光度计 AFS-IIA
泉汞	士鎮馬蘭 总束、总碑、总铅的函定 原子类光 法 第 1 部分。土壤中总汞的测定 GB/T 22105.1-2008	單子黃光光度計 AFS-11A
耕	土壤和沉积物 汞、砷、蜡、铋、锑的潮定 敬 波消解/原子荧光法 HJ 680-2013	原了炭光光度计 AFS-11A
东	土壤和沉积物 汞、砷、硒、锑、锑的测定 徵 波排解/原子英光法 HJ 686-2013	軍子黃光光度計 AFS-11A
钽	土壤和沉积物质、锌、铝、镍、铬的测定 火 增厘子吸收分光光度法 HJ 491-2019	原子吸收分光光度计 TAS-990F

检测项目	检测依据	主要分析仪器设备及型号
铜	土壤和沉积物 铜、钨、铅、镍、铬的测定 火 焰质子吸收分光光度法 HJ 491-2019	原子吸收分光光度计 TAS-990F
锌	土壤和沉积物 铜、锌、铅、镍、铬的测定 火 焰原于吸收分光光度法 HJ 491-2019	原子吸收分光光度计 TAS-990F
併基苯、萘、2-氮苯 酚、苯并[a]蒽、扇、 苯并[b]荧蒽、苯并 [k]荧蒽、苯并[a]芘、 却并[1,2,3-c,d]芘、 二苯并[a,h]葱、2-甲 基萘	土壤和沉积物 牛挥发性有机物的测定气相色 谱-质谱法 HJ 834-2017	气相色谱质谱联用仪 GCMS-QP2020
石油烃(C ₁₀ -C ₆₀)	土壤和沉积物 石油烃 (C ₁₃ C ₄₀) 的测定 气相 色谱法 HJ 1021-2019	气相色谱仪 GC2030
1,1,1,2-四氢乙烷**	•	
1,1,1-三凱乙烷**		
1,1,2-三氯乙烷**		2
1,1,2,2-匹氦乙烷**		
1,1-二氟乙烷**		
1,1-二氯乙烯**	2:	(97.4
1,2,3-三氯丙烷+*	土壤和沉积物 挥发性有机物的测定 吹扫捕	
1,2-二氯丙烷**	集/气相色谱-质谱法 HJ 605-2011	气相色禮质瀋联月仪 8890/5977B
1,2-二氢乙烷++		
1,2-二氮苯**		
1,4-二氯苯**		
三氰乙烯**		
乙苯**	Seo olido	
二氯甲烷**	Sea (III)	

检测项目	检测依据	主要分析仪器设备及型号
反式-1,2-二氯乙烯 **		
四氯乙烯**		
四氯化碳**		
紅乙烯**		
氯仿**		
氯甲烷**		
氯苯**	土壤和沉积物 挥发性有机物的测定 吹扫捕 集/气相色谱-质谱法 HJ 605-2011	气相色谱质谱联用仪 8890/5977B
甲苯**	- 100 / 100 of 100 of 200 of 100 of 1	
#**		^
举乙烯**		
邻-二甲苯**		-
何-二甲苯+对-二 甲苯++		
顺式-1,2-二氯乙烯 **		E-
氮化物*	土壤 氧化物和总氧化物的测定 分光光度法 HJ 745-2015	可见分光光度计 L3
华甘膦*	土壤和沉积物 草甘膦的测定 高效液相色谱 法 EU 1055-2019	液相色谱仪 LC-20AT/SPD-20A
甲氰菊酯*		
顺式氧氮氰菊酯*	110000000000000000000000000000000000000	
氰戊菊酯*	土壤和沉积物 有机磷类和拟除虫菊结类等 47种农药的测定 气相色谱-脱谱法	气相色谱质谱联用仪 8890/5977B
換氰菊酯*	HJ 1023-2019	
凯 虫腈*	L 45 -	

检测项目	检測依据	主要分析仪器设备及型号
草甘膦*	水质 草甘膦的测定 高效液相色谱法 HJ 1071-2019	滋柑色谱仪 LC-20AT/SPD-20A
百萬灣*		
甲氧苯酯*		
氫氟椰菊酯+	水质 百萬清及拟除虫菊酯类农药的测定 气 相色谱-质谱法 HJ 753-2015	气相色谱质谱联用仪 8890/5977B
氰戊菊酯*		
溴氰菊酯*		
四額化碳+		
可-二甲苯+对-二 甲苯*		D :
氮仿*		= 1.4
甲苯*	水质 挥发性有机物的测定 吹扫捕集/气相色 谱-质谱法 HJ 639-2012	气相色谱质谱联用仪 7890B/5977B
苯*		
苯乙烯*		
邻-二甲苯*		

		# f	2025-08-27	/7-W		
检测点号/点位	ī	GI土壤(柱状)指拠点SI	IS.	25	G2 上壤(桂状) 修測点 S6	98)
样品编号	251640 G-1-1-1-1	251640 G-1-1-1-2	251640 G-1-1-1-3	251640 G-1-2-1-1	251640 G-1-2-1-2	251640 G-1-2-1-3
攤	322	306	95	45	22	57
44	*	23	23	46	36	33
*	46	53	74	18	104	22
石油烃 (Cu-Cm)	10	16	6	34	83	9
小价格	<0.5	<0.5	<0.5	<0.5	\$*************************************	<0>
来除	<0.06	<0.06	<0.05	>0.06	>0,06	90'0>
2-氣苯酚	<0.06	<0.06	>0.06	<0.06	<0.06	<0.06
确禁茶	<0.09	60'0>	<0.09	<0.09	60'0>	<0.09
帯	60'0>	<0.09	<0.09	60'0>	<0.09	<0.09>
苯并[8]黨	<0.1	<0.1	<0.1	<0.1	F0>	<0.1
揖	<0.1	<0.1	1'0>	<0.1	<0.1	<0.1
讲并11.2.3-c,4]推	<0.1	<0.1	<0,1	<0.1	F0>	<0.1
二苯并加利惠	1'0>	<0.1	1.0>	10>	<0.1	-0×

米样时回			2025	2025-08-27		
检测点号/点位	ID.	GI 土壙 (柱状) 監測点 SI	31	G2	G2 土壤(柱状) 格測点 S6	98
中醫品	251640 G-1-1-1-1	251640 G-1-1-1-2	251640 G-1-1-1-3	251640 G-1-2-1-1	251640 G-1-2-1-2	251640 G-1-2-1-3
苯并[b]炭蒽	<0.2	<0.5	<0,2	<0.2	<0.2	<0.2
米井[N] 炎薬	ros	<0,1	<0.1	1.0>	<0.1	<0.1
米井同能	<0,1	<0.1	<0.1	131	0.3	<0.1
2-甲基券	80'0>	<0.08	80'0>	80°0>	<0.08	<0.08
無事	<1.0×10³	<1.0×10 ²	<1.0×10³	<1.0×10°1	<1,0×10 ⁻³	<1.0×10³
#22第	<1.0×10 ⁻⁵	<1.0×10³	<1.0×10 ²	<1.0×10 ⁵	<1,0×10 ⁻³	<1.0×10 ³
1,1二氟乙烯++	<1.0×10³	<1.0×10 ³	<1.0×10 ⁻²	<1.0×10°	<1.0×10 ⁴	F01×0.1>
反式-13-二氯乙烯**	<1.4×10³	<1:4×10³	<1.4×10³	<1.4×10°	<1,4×10°	<1,4×10³
斯式-12。二氯乙烯**	<1,3×10 ³	<1.3×10 ⁴	<1.3×10*	<1.3×10 ⁴	<1.3×10 ²	<1.3×10 ³
***%	<1.5×10*	<1.5×10³	<1.5×10 ³	<1.5×10 ⁴	<1.5×10 ³	<1.5×10 ³
1,2-二號內第++	<1.1×10²	<1.1×10 ³	<1.1×10 ³	<1.1×10 ³	<1.1×10 ⁴	<1.1×104
**************************************	<1.2×10 ⁴	<1.2×104	<1.2×10³	<1,2×10³	<1.2×10*	<12×10 ³
1,2-二氧乙烷**	<1.3×10²	<13×10³	<1.3×10³	<13×10 ³	<1,3×10 ⁴	<13×10 ³

米森県回			2005	2025-08-27		
徐测点号/点位	ED .	G1 土壤(柱长)监缆点S1	. 81	02	G2 土壌(柱状) 紫翅点 S6	98)
台灣田津	251640 G-1-1-1-1	251640 G-1-1-1-2	251640 G-1-1-1-3	251640 G-1-2-1-1	251640 G-1-2-1-2	251640 G-1-2-1-3
氧价***	<1,1×10 ⁴	<1.1×10°	<1.11×10²	<1.1×10°	<1.1×10³	<1.1×16 ³
1,1,1-三氧乙烷**	<1.3×10 ⁴	<1.3×10 ²	<1,3×10³	<1.3×10³	<1.3×16 ³	<1,3×10 ⁴
1,12-三氧乙烷**	<1.2×10²	<1,2×10 ³	<1.2×10³	<1.2×10³	<1.2×10³	<1.2×10*
四氧化碳++	<1,3×10³	<1.3×10³	<1.3×10³	<1.3×10°	<1.3×10³	<1.3×10 ⁴
***	<1.9×10 ³	<1.9×10³	<1,9×10 ⁻⁵	<1.9×10 ³	<19×10 ³	<1.9×10³
三級乙烯中	<1.2×10 ⁻³	<1.2×10 ³	<1.2×104	<1.2×10³	<12×10³	<1.2×10 ⁴
***树曲	<1.3×10 ⁻¹	<1.3×10°	<1.3×10³	<1.3×10°	<13×10³	<1.3×10 ⁴
**数2英回	<1.4×10²	<1.4×10³	<1.4×10 ⁴	<1.4×10°	<134×10 ⁴	<1.4×10 ⁴
鼠林**	<1.2×10 ⁴	<1.2×10°	<1.2×10 ⁴	<1.2×10°	<12×104	<1.2×10³
1,1,1,2 四氟乙烷**	<12×169	<1.2×10 ⁴	<1.2×10 ³	<1.2×10 ³	<1.2×10 ³	<12×10°
1,1,2,2,四氧乙烷**	<1.2×10²	<1.2×10 ⁴	<1.2×10°	<1.2×10³	<1.2×10 ⁴	<1.2×10°
5/本**	<1.2×10 ²	<1.2×10°	<12×10*	<1.2×10³	<1.2×10°	<1.2×10³
40.11年本。	<1.2×10 ²	<1.2×10°	<1.2×10*	<1.2×10³	<1.2×10 ³	<1.1×10³

200			5707	12-00-520		
**	15	G1 土壌(柱状)路湿点S1	18:		G2 土壤(柱状)監測点S6	99
4-1-4-1-4-1-4-1-4-1-4-1-4-1-4-1-4-1-4-1	251640 G-1-1-1-1	251640 G-1-1-1-2	251640 G-1-1-1-3	251640 G-1-2-1-1	251640 G-1-2-1-2	251640 G-1-2-1-3
	<1,2×10°	<12×10 ⁴	<12×104	<1.2×10 ³	<1.2×10 ⁴	<1.2×10²
※乙烯***	<1.1×10°	<1.1×10 ³	<1.1×10°	<1.11×10°	<1.1×10³	<171×104
1,2,3.二氟丙烷**	<1.2×10 ⁴	<1.2×10³	<1.2×10 ³	<1,2×10³	<12×10³	<12×10-3
1,4一级米**	<1.5×10 ³	<01X511>	<1.5×10 ²	<1.5×10³	<1.5×10 ¹	<1.5×10 ⁻³
12二年	<1,5×10 ⁴	<1.5×10 ²³	<1.5×10 ³	<1.5×10 ³	<1.5×10 ³	<1.5×10 ³
無化物*	<0.04	<0.04	<0.04	×0.04	<0.04	<0.04
草廿膘。	<0.02	<0.02	20'0>	<0.02	<0.02	<0.02
甲氧烷酯*	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
周式製蕉軟遊園*	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
氘伐渐脂。	₽'0.≻	<0.4	¥0>	<0,4	<0.4	<0.4
张斯 维朗·	<0.8	<0.8	<0.8	8'0>	8.0>	<0.8
康虫肼*	<63	<03	<0.3	<03	<0.3	<0,3

表1-2 土壤检测结果	集位別結果						
蒸	果样时间			2025	2025-08-27		
松瀬点	检测点号/点位	69	G3 土壤 (杜状) 監劃点 S9	68)	25	G4 土壤(柱状)館融点 SDZ	40
中央	台灣田社	251640 G-1-3-1-1	251640 G-1-3-1-2	251640 G-1-3-1-3	251640 G-1-4-1-1	251640 G-1-4-1-2	19
	质粒	干算後	十套	44年	干净	1 像	
+ estebase	極度	H.	関	逊	麗	蓰	
	銀色	亲色	精色	北	数	综色	
	代殊	#	**	ĸ	泯	118	
十 凝	土壌深度 (m)	0-0.5	1,0-1,5	2.5-3.0	0-0.5	1.5-2.0	
pH值(pH 債 (无量網)	6.97	16.9	6.95	673	6.78	
寒	無名物	487	433	463	564	529	
- Mga-Zi	旛	60'0	0.04	0.16	0.13	80.0	
	學	22.4	17.4	16.8	18.1	18.3	1
刻	最均	3,51	1.49	23.3	25.4	8,93	
Đ	张 班	0.062	0.022	0.060	0,073	0.041	
	遊	75.	99	65	7.1	57	

采样时间			2025	2025-08-27		
检测点号/点位	B	G3 土壌(柱状) 旅港店 S9	68	9	G4 土壤(柱状) 監視点 SDZ	ZOS
中部衛子	251640 G-1-3-1-1	251640 G-1-3-1-2	251640 G-1-3-1-3	251640 G-14-1-1	251640 G-1-4-1-2	251640 G-1-4-1-3
#	81	20	73	39	E	28
赫	53	75	22	87	29	62
石油松 (C.II-Cao)	01	13	6	9	7	10
大学器	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
未酸	>0.06	<0.06	<0.06	<0.06	90'0>	>0.06
2-氯苯酚	90'0>	<0.06	>0.06	<0.06	>0.06	<0.06
强 推案	<0.09	<0.09	<0.00	<0.09	<0.09	<0.0>
#	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
来并[n]邀	<0.1	<0.1	<6.1	<0.1	<0.1	<0.1
題	1.0>	<0.1	1.0>	<0.1	<0.1	<0.1
带井11,2,3-c,d]莊	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
本井[14,4]廢	<0.1	<0.1	<0.1	<0.1	/0>	<0.1
米邦的英麗	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

采样时间			2025	2025-08-27		
检测点号/点位	ED .	G3 土壤(柱状)監測点 S9	68	5	土塊(柱状)監測点802	ZGS
台灣提供	251640 G-1-3-1-1	251640 G-1-3-1-2	251640 G-L3-L3	251640 G-1-4-1-1	251640 G-1-4-1-2	251640 G-1-4-1-3
苯并国衆舊	<0.1	I'0>	<0.1	<0.1	<0.1	<0.1
率并 加度	<0,1	<0.1	F'0>	<0.1	70>	9.0
2.甲基萘	80'0>	<0.08	80'0>	80.0>	80'0>	<0.08
氧甲烷**	<1,0×10 ⁴	<1.0×10³	<1.0×10.3	<1.0×10³	<1.0×10³	<1.0 × 10 ⁴
**報2第	<1,0×10 ⁻¹	<1,0×10 ⁸	<1.0 × 10.1	<1.0×10³	<1.0×10 ⁻³	<e0×104< td=""></e0×104<>
**帮乙第二-11	<1.0×10³	<1.0×10 ²	<1.0 × 10°	<1.0×10³	<1.0×10 ⁴	<1.0×10 ⁴
反式-1,2二氯乙烯**	<1,4×10³	<1,4×10°	<1.4×10³	<1.4×10 ⁴	<1.4×10³	<1,4×10 ³
而式-1,2-二氧乙烯++	<1,3×10³	<13×103	<1.3×10 ⁸	<1.3×10°	<13×10³	<1.3×10 ³
二萬甲烷**	<1,5×10³	<1.5×10 ³	<1.5×10 ³	<1.5×10°	<1.5×10 ³	<1,5×10 ⁴
姚四期二十	<1,1×10³	<1.1×10³	<1.1×10	<1.1×10 ³	<1.1×10 ⁴	<13×10 ³
* 提 2 第 二 11	<1.2×10°	<1.2×10°	<1.2×10 ⁴	<1.2×10 ⁴	<12×104	<1.2×10³
* 50 7 10 11 11	<1.3×10³	<1.3×10°	<1,3×10 ³	<1.3×10 ⁴	<1.3×10 ⁴	<1,3×10 ⁶
氣份**	<1.1×10³	<1.1×10°	<1,1×10°	<1.1×10°	×1,10×10°	<1.1×10 ³

采养时间			2025	2025-08-27		
检测点号/点位	55	二七樓(桂城)陸龍点 89	68	\$	無	G4 土壌 (柱状) 脳製点 SDZ
台灣田社	251640 G-1-3-1-1	251640 G-1-3-1-2	25†640 G-1-3-1-3	251640 G-1.4-1-1	25 62	251640 G-1-4-1-2
1,1,1-三載乙拾==	<1,3×10 ⁻¹	<1.3×10°	<13×10°	<e3×103< td=""><td>V</td><td><1.3×10⁻⁵</td></e3×103<>	V	<1.3×10 ⁻⁵
1.1.2-三氧乙烯**	<1.2×10³	<1.2×10²	<12×10 ⁻³	<1.2×10 ⁴	, 51.	<1.2×10³
四章化學一	<1.3×10°	<1.3×10²	<13×10 ⁴	<1,3×10 ²	SES.	<13×10°
***	<1,9×10³	<1.9×10³	<1.9×10³	<1.9×10²	<1.9×10 ²	c102
三氯乙烯艹	<1.2×10³	<12×10°	<1.2×10*	<1,2×10³	<1.2×10 ³	10-3
中***	<1.3×10 ⁴	<13 × 105	<13×10³	<1.3×10³	<1.3×10*	10-1
四氟乙烯**	<1.4×10 ⁴	<1.4×10³	<1.4×10³	<1.4×10³	<1.4×10°	.01
"你***	<(12×10°)	<1.2×10³	<1.2×10³	<1.2×10 ⁴	<12×10°	10.4
1,1,1,2,四氢乙烷+	<1.2×10 ²	<1.2×10°	<1.2×10 ³	<112×10 ⁴	<1.2×10°	104
1,1,2,2.四氧乙烷**	<1.2×10 ³	<1.2×104	<1.2×10 ³	<1.2×10 ³	<1.2×10³	10-3
2.苯**	<12×10 ³	<1.2×10°	<1.2×10"	<1.2×10³	<12×104	10-3
##本二一#	<12×10 ⁴	<12×10³	<1.2×10³	<1,2×10 ³	<1.2×10-	10-1
**** 出口"松************************************	* <1.2×10³	<1.2×10³	<1.2×10³	<1.2×10 ³	<1.2×10 ³	100

原样財貨			2025	2025-08-27		
检测点号/点位	8	G3 土壌(柱状) 監測点 S9	80	3	土塘(柱状)监测点 \$D2	SDZ
特別衛母	251640 G-1-3-1-1	251640 G-1-3-1-2	251640 G-1.3-1-3	251640 G-1-4-1-1	251640 G-14-1-2	251640 G-1-41-3
*** 数2 并	<1.1×10 ⁴	<111×10 ⁴	101×11>	<1.1×10 ⁴	<1.1×10 ⁴	<1.1×10 ²
1,2,3、三氧四烷***	<1,2×10 ⁴	<12×10 ⁻⁷	<1.2×10 ³	<1.2×10 ³	<12×10°	<1.2×10³
1,4二氧苯=	<1.5×10³	<1.5×10°	<1.5×10³	<1.5×10³	<1.5×10°	<1.5×10³
1.2-二氧茶**	<1.5×10°	<1.5×10 ³	<1.5×10 ⁴	<1.5×10 ⁴	<1.5×10 ³	<1.5×104
東先物。	¥0.0>	<0,04	×0.04	<0.04	<0.04	<0.04
本仕脚*	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02
甲氧焰酯*	₹0,3	<0.2	<0.2	<0.2	<0.2	<0.2
顺式数值管新配。	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
机及着曲。	<0.4	<0.4	<0,4	₹0%	4'0>	<0,4
疫氣循陷"	<0.8	<0.8	<0.8	<0.8	< 0.8	8.0>
無止腦*	<0.3	<0.3	<0.3	<0.3	<0,3	<03

藥	装样时间			2025	2025-09-03		
公園 公	检测点号/宏位	G5 土業(表层)協議 於 S2	G5 土壌(表层)監測G6 土積(表层)監測G7 土壌(表层)監測G8 土壌(表屋)监置G9 土壌(表层)監測G10 土壌(表层) 点 83 点 53 点 57 割点 88	G7 土壌 (表別) 監測 点 S4	(38 土壌 (表屋) 監測 点 S5	IG9 土華 (表屋) 監測 点 S7	IG10 土権 (表 別点 88
#	种品编号	251640 G-1-5-1	251640 G-1-6-1	251640 G-1-7-1	251640 G-1-8-1	251540 G-1-9-1	251640 G-1-10-
	難色	品祭母	報	黄棕色	動の	400	脂棕色
T. Halle J.C.	遊遊	舞	聚	類	莱	雅	凝
一	植物根系	e e	少	を	90	争	極
	土壤損態	干卖药	お郷土	松瀬十	十二季以	松瀬十	经建士
土塘郊境((m)	0-0.5	0.0.3	0-0.5	0-0.5	0-0.5	0.0.5
10日頃(pH 值 (天皇勢)	6.85	6.55	6979	6.75	6,94	6.71
縺	氧化物	424	432	520	483	167	581
		0.08	0.11	0.14	0.11	90.0	0.19
Mar.	朝	27.9	17.9	16.6	8.10	7,40	8,48
類	拉爾	6.50	6.48	7.57	6,44	7.52	8,70
-EQ	总表	0.116	0,248	0.144	0.218	0.213	0.064
-	新	#	24	52	39	44	32

采样时间			2025	2025-09-03		
检测点号/点位	GS 土壤 (表层) 监测 从 S2	G6 土壌(表层)監測 点83	GS 土壤 (表层) 監測G6 土壌 (表层) 監測G7 土壌 (表层) 監測G8 土壌 (表层) 監測G10 土壌 (表层) 監測G10 土壌 (表层) 監測G10 土壌 (表层) 監測 S3 点 S4 点 S5 点 S7 測点 S8	G8 土壌 (表层) 鉛類 - 点 S5	(19 土煤 (表层) 监》 点 S7	G10 土壌(巻 瀬庄S8
存品编号	251640 G-1-5-1	251640 G-1-6-1	251640 G-1-7-1	251640 G-1-8-1	251640 G-1-9-1	251640 G-1-10-1
₽	77	п	26	22	22	22
黎	36	\$9	51	36	44	43
石油烃 (C ₁₀ -C ₄₀)	30	91	22	18	61	16
大价格	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
苯胺	<0.06	>0.06	>0.06	>0.06	90'0>	>0.06
2. 紫苯酚	<0.06	<0.06	90'0>	<0.06	90'0>	>0.06
個務業	<0.09	60'0>	<0.09	<0.0>	<0.09	<0.09
松	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09
茶井回應	<0.1	<0.1	1.0>	<0.1	<0.1	<0.1
被	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
南井[1,2,3-c,d]崔	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
工業井[s,h]應	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
本井[b]英蕙	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

采样时间			2025	2025-09-03		
检测点号/点位	(35 土業(表层)情測 左 S2	G6 土壤 (表层) 监狱 点 S3	G7 土壌 (表景) 監測 点 84	G8 土壤 (表层) 监测 点 S5	G5 土壌(灰层) 临測G6 土壌(灰层) 临损(G7 土壌(表层) 临制(G8 土壌(灰层) 监测G9 土壌(衣房) 監測G10 土壌(衣层) 担保(衣层) 左 S2	G10 土壌 (表层) 监 測点 S8
特品编号	251640 G-1-5-1	251640 G-1-6-1	251640 G-1-7-1	251640 G-1-8-1	251640 G-1-9-1	251640 G-1-10-1
苯并內從第	<0.1	<0.1	<0.1	<0.1	1.0>	<0.1
推并Ja[從	<0.1	<0.1	<0.1	<0.1	1'0>	<0.1
2.甲基萘	80'0>	<0.08	<6.08	<0.08	≥0.08	<0.08
-器山湖	<1.0×10	<1:0×10 ⁴	<1.0×10°	<1.0×10*	<1.0×10 ⁻³	<1.0×10²
**格乙類	<0.00×10°	<1.0×10³	<1.0×10 ⁻³	<1.0×10³	<1.0×10 ³	<1.0 × 10.4
**#2第二门	<1.0×10 ⁴	<01×071>	<1.0×10*	<1.0 × 10*	<1.0×10 ²³	<1.0×10.1
反式-1,2二氧乙烯==	<1.4×10²	<1,4×10 ³	<1.4×10³	<1.4×10³	<1,4×10°	<1,4×10 ²⁴
顺式-1,2-二氯乙烯++	<1,3×10 ³	<13×10 ³	<13×10³	<1,3×19³	<1.3×10³	<1.3×10 ³
**************************************	<1.5×10"	<1.5×10 ³	=01×5:1>	<1.5×10 ⁴	<6.5×10°	<1.5×10 ⁻⁵
1,2-二氟丙烷***	<1.1×10³	<1.1×10³	<1.1×10³	<1.1×19³	<1.1×10³	<1.11×10 ³
(1)-二氟乙烷**	<1.2×10 ³	<12×10°	<1.2×10³	<1.2×10 ⁹	<1.2×10 ³	<1.2×10°
1.2-二氧乙烷++	<1.3×10 ⁴	<1.3×10°	<1,3×10 ³	<1.3×10³	<1.3×10 ³	<13×10 ⁹
第65**	<1.1×10 ⁴	<1.1×10³	<1.1×10*	<1.1×10-3	<1.1×10°3	<1.1×10°

采样时间			2025	2025-09-03		
检测点导信位	GS 上灣 (表层) 監測 点 S2	G6 土増 (表层) 距測 点 S3	GS 上職(表层)監測GG 土場(表层) 監測(G7 土壌(表层) 監測G9 土壌(表层) 監測G10 土壌(支炭) 約 点S2 点S1 点S4 点S4 点S5 点S7 剥点S8	GB 土壌 (表层) 監測 点 S5	G9 土壌(長星) 監測 点S7	G10 土壌(龙原)型
各時間計	251640 G-1-5-1	251640 G-1-6-1	251640 G-1-7-1	251640 G-1-8-1	251640 G-1-9-1	257640 G-1-10-1
1,1,1-三葉乙烯+4	<1.3×109	<1.3×10 ⁴	<13×10³	<1.3×10³	<1.3×16 ³	<1.3×104
1,1,2-三氟乙烷**	<1.2×104	<1.2×10°	<1.2×10³	<1.2×10³	<1.2×10°	<12×10 ³
国氧名級**	<1,3×10²	<1.3×10³	<1.3×10³	<1.3×10³	<1.3×10³	<13×10 ⁴
***	<1.9×10 ⁻¹	<1.9×10 ⁵	<1.9×10 ³	<1.9×10³	<1.9×10³	<e9×10<sup>4</e9×10<sup>
**報2第三	<1,2×10³	<1.2×10 ³	<1,2×10"	<1.2×19 ³	<1.2×10 ⁻³	<12×104
年**	<1.3×10³	<1.3×10³	<13×10°	<1.3×10°	<13×10 ⁴	<1.3×10 ³
++數乙第州	<1.4×10 ³	<1.4×10°	<1.4×10 ⁻⁵	<1.4×10 ³	<1,4×10 ³	<1.4×10 ⁴
紅米+*	<1.2×10 ⁴	<1.2×10²	<1.2×10 ³ ·	<1.2×10°	<1.2×10 ³	<1.2×10 ⁴
1,1,1,2,四氟乙烷**	<1.2×10 ⁴	<1.2×10 ⁴	<1.2×10°	<1.2×10 ³	<1.2×10 ⁻³	<12×10°
1,42,24四氧公益**	<1,2×10 ⁴	<1.2×10 ⁴	<1,2×10 ⁴	<1.2×10³	<1.2×10 ⁴	<1.2×10°
2.本**	<12×10³	<1.2×10 ³	<1.2×10 ⁴	<1.2×10 ³	<1.2×10 ⁵	<1.2×10*
**************************************	<1.2×10³	<1.2×10 ⁻¹	<1,2×10 ³	<1.2×104	<1.2×10³	<1.2×10³
***	<1.2×10³	<1.2×10 ³	<12×10*	<1,2×10°	<1.2×10 ³	<1.2×10³

米棒點角			2025	2025-09-03		
检测点号/点位	G5 上埠(表見) 监測 点 S2	G6 土堆(表层) 陸測 点 83	G5 上塊 (表更) 能謝G6 土塊 (表层) 培訓G7 土壤 (表层) 控制G8 点 82 点 83 点 84	G8 土壤 (表层) 监测 点 85	土壤(炎层)监测(59 土壌(夜层)监测(510 土煤(表层) 层85 丛87 湖底58	G10 土雄 (表原) 能 製点 S8
各學用書	251640 G-1-5-1	2516/0 G-1-6-1	251640 G-1-7-1	251640 G-1-8-1	251640 G-1-9-1	251640 G-1-10-1
**辦乙幸	<1,1×10²	<1.1×10 ³	<1.1×10³	<1.1×10°	<1.1×10 ³	<1.1×10 ⁵
13.7二氢四烷**	<1.2×10 ⁴	<1.2×10 ⁴	<1.2×(0³	<1.2×10°	<1.2×10°	<12×10³
1,4二架茶**	<1.5×10 ⁻¹	<1.5×10 ³	<15×10³	<1.5×10³	<1.5×10 ³	<1.5×10 ⁴
1,2-二氧苯	<l5×10³< td=""><td><1.5×10³</td><td><1.5×10⁴</td><td><1.5×10[±]</td><td><1.5×10³</td><td><1.5×10³</td></l5×10³<>	<1.5×10³	<1.5×10 ⁴	<1.5×10 [±]	<1.5×10³	<1.5×10³
東先都*	>0,04	<0.04	<0.04	<0.04	<0.04	<0,04
华祖牌*	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
中東海艦*	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2
而式氣氣氣氣器。	<0.2	<0.2	<0.2	<-0.2	<0.2	<0.2
氣衣菊戲*	<0,4	<0.4	<0.4	<0,4	<0.4	<0.4
级机箱脂"	<0.8	<0.8	<0.8	8′0≻	<0.8	800>
氣虫腫*	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3

表1 底流检测结果	*		单位: mg/kg
米	采样时间	202	2025-09-02
松湖	检测点号/点位	G11 电滤曲测点 DN1	G12 底網區到点 DN2
掛	長期報子	251640 G-1-11-1	251640 G-1-12-1
4	の機の	你灰色	深灰色
AS AS LE AV	五味	ĸ	米
**************************************	水深 (m)	292	274
ph (f)	pH 億 (元量纲)	6.75	6.82
瀬	漢名数	205	512
- Ger	W	2.08	65'0
	#	11.5	14.3
a)	经的	9,94	9,04
ZÚ.	多 来	0,301	0.111
424	養	558	38
egtr	自	-68	355

采样时间	2025-09-02	grace.
检测点号/点位	G11 底泡些测点 DN1	G12 東海西地 DN2
林品编号	251640 G-1-11-1	251640 G-1-12-1
幸	28	611
石油烧 (Cu-Cu)	42	33
次安路	<0,5	<0.5
林縣	90'0>	>0.00
2-瘋茶壺	>00.06	>0.06
精維米	60'0>	60'0>
森	60'00>	<0.09
苯并间部	<0.1	1:0>
糧	<0.1	1.0>
南升1,2,3-c,d(超	. <0.1	<0.1
二苯并[4,1]	<01	<0.1
米井IDI茨鹿	<0.2	<0.2

米样时间	2025-09-02	
権測点号/点位	G11 底窓监網点 DN1	GI2 麻泥脂瀬点 DN2
特智鄉	251640 G-1-11-1	251640 G-1-12-1
苯并NI英蒽	<0.1	<0.1
苯并回從	<0.1	1.0>
2.甲基萘	80'0>	80'0>
建甲烷**	<1.0×10 ⁴	<1:0×10²
黨乙烯**	<1.0×10³	<1.0×10³
1,1-二氟乙烯**	<1.0×10³	<1.0×10°
反式-1,2-二氧乙烯**	<1,4×10°	<1,4×10°
州式-1.2-二氧乙烯**	<1.3×10°	<1.3×10³
二氢甲烷一	<1.5×10 ⁻³	<1.5×10 ³
1,2-二氯丙烷**	601×115>	<1.1×10 ⁴
1.1二萬乙烯中	<12×10 ⁴	<1,2×10³
1.2-二葉乙烷**	<13×10²	<1.3×10³

(W 核布施号: HJ251640		井 27 贝 共35 共
采栉时间		2025-09-02
檢測点号/点位	GII 底彩监别点 DNI	G12 成配监测点 DN2
特品籍号	251640/G-1-11-1	251640 G-1-12-1
被估**	<0/10/10/2	Ş. X. I.Ş. X. I.Ş. X. I.Ş. X.
1.1,1-三氟乙烷**	<1,3×10 ⁴	<1.3×10 ⁴
1,1,2-三氟乙剂**	<1.2×10 ⁴	<1.2×10 ²
回難右窺⇒	<1.3×10°	<\:\3×10 ²
※**	<1.9×10 ⁴	<1.9×10 ³
三個乙烯**	<1,2×10 ²	<1,2×(0)
甲苯••	<13×10 ⁻¹	<1.3×10 ³
四氟乙烯**	<1.4×10³	<1.4×10°
****	<1.2×10 ¹¹	<1.2×10 ³
1,1,1,2-四氧乙烯++	<1.2×10 ^d	<12×10 ⁴
11.2,2-四氧乙烷**	<1.2×10 ³	<1.2×10 ⁴
7 李**	<1.2×10°	<1.2×10 ²

条雑杆回 権遇編号 G11 底泥塩圏点 DN1 第二甲素** 251640 G-1-11-1 第二甲素** <1.2×10 ³ 第二甲素+及二甲素** <1.2×10 ³ 1.2.5三載丙烷** <1.2×10 ³ 1.4二氯素** <1.5×10 ³ 申責者商* <1.5×10 ³ 申責者商* <0.02 申責者商* <0.2 順式原紙原金額* <0.2	2025-09-02 % DN1 IT-1	G12 東端清遊中 DN2
株型点号/点位 株品編号 第二甲素** - 甲来+及-二甲素** 1.2.3-三載丙烷** 1.4		G12 底部指数点 DN2
権品編号 第-二甲素** - 日来+労-二甲素** 1.2.3三編丙烷** 1.4二氟素** 1.2-二級 ※** 中額毎 №* 可式版知 順 組 **		The second of th
第-二甲素** 甲素+粉-二甲素+* 	10.00	251640 G-1-12-1
- 甲苯+效-二甲苯** 基乙烯** 1,4二氯苯** 1,2二氯苯** 申甘膦* 甲氧角醛*		<1.2×10 ³
苯乙烯** 1,4二氯苯** 1,4二氯苯** 中氧培醛* 可抗氮氧醛*		<1.2×10 ³
1.2.3.三氯丙烷*** 1.4.二氯苯** 1.2-二氯苯** 中氧油酯* 可式氮氮葡萄**		<llx104< td=""></llx104<>
1.4二毫苯** 1,2-二氯苯** 卓甘膦* 甲氧海曆* 历式原氣氣強點*	,	<1,2×10³
1,2		<1.5×10 ³
草甘縣* 中氧海酯* 抗式蘇氣氣土		<1.5×10²
		<0.02
	-	<0.2
	fi	<0.2
制.戊菊酯*		<0,4
美景瀬窟 ◆ < 0.8		<0.8
候虫猫。 <0.3		<0.3

》据典编码,117251640

第20页共35页

表3 地下水检测结果

采荐时间			2025-09-02		
检测点号/点位	S1美華元世下水临灣 S2 点 W1	· 英華元維下水監測 点 W2	S3 类单元趋下水临抛 点 W4	英華元趋下水監約 84 二獎華元維下水監辦 点 W4	SS 植下木脂剂对丽点 WDZ
母報母母	251640 S-1-1-1	251640 S-1-2-1	251640 S-1-3-1	251640 \$-14-1	251640 8-1-5-1
样品性状	水样徵浑, 线页色	水样戲浑, 沒英色	水林锁泽, 烧黄色	水样微消, 淡黄色	水样谢海, 浅黄色
pH值《无量纲》	8.0	2.2	8.3	7.4	7.3
遊廣 (NTU)	24	38	99	7.0	10
化学需氧量 (mg/L)	46.2	46.8	36.6	58.6	19.2
氨氮 (mp/L)	637	7,58	3.90	1.19	1.35
吕颖 (mg/L)	7.24	8.10	4.52	2.01	2.44
(磷酸盐 (mg/L)	0.331	0.326	<0.007	0.326	<0.007
排发酚 (mg/L)	0,0017	0.0021	0.0015	0.0012	9,00014
財离子奏面攝性剤 (mg/L)	\$6000 (*	0.154	0.070	0.183	<0.050
氯离子 (CF) (mg/L)	64.2	38.2	42.8	9'61	33.4
硫酸根 (SO2-) (mg/L)	278	50 55	16.2	68.6	92.9
舜酸盐類 (mg/L)	0.39	0.29	0.69	0.88	0.64

0.000 mm =					TO COLOR OF STREET
采样时间			2025-09-02		
检测点号/点位	81一类单元地下水监测 是 W1	81 - 英華元地下水遊劃 82 - 委単元地下水前割 8 点 W1	S3 一类单元油下水脂器 点 W4	一类单元独下水脂腈 84 二类单元进下水临别 点 W4 点 W4	S5 地下未能船对轭点 WDZ
样品编号	25(640 S-1-1-1	251640 8-1-2-1	251640 S-1-3-1	251640 5-1-4-1	251640 S-1-5-1
样品性状	水洋農用, 沒黄色	水焊接师, 浅黄色	木样被挥, 沒黄色	火枯燥油, 流淋巴	水样饭库,洗效色
亚硝酸盐氮 (mg/L)	0,065	0.028	0.005	6,003	0.015
氧化物 (mg/L)	0.74	0.95	0,61	0,40	0.34
硫化铯 (mg/L)	<0,003	<0.003	<0.003	<0.003	<0.003
总硬度(特和银总量) (mg/L)	336	281	402	233	430
號 (mg/L)	0.11	0,02	1.42	0.12	0.34
铁 (mg/L)	0.38	0.06	07.70	0.10	0110
铜 (mg/L)	<0.02	<0.02	<0.02	<0.02	<0.02
(mgl.)	<0.02	<0.02	<0.02	<0.02	<0.02
总砷 (mg/L.)	0.0380	8610.0	9,4×10 ⁻³	0.0172	4.1×16 ³
泉景(mg/L)	7,68×10*	1.41×10+	538×10°	0.00162	134×104
总语 (mg/L)	5.4×10+	6.8×10 ⁻¹	+01×47	<4.0×10*	<4.0×10+
图 (mg/L)	<1,00×10*	<1,00×10 ⁻¹	+01×001>	<1,00×10"	<1.00×10+

米伟时间			2025-09-02		
检测点号/启位	81 - 淡草元烘干水館湖 82 点 W1	82 一类单元地下水监测 83 点 W2	3 一类单元地下水防剿 S4 点 W4	S4 二类单元地下水监测 点 W3	SS 地下水临離時阻点 WDZ
样品编号	251640 8-1-1-1	251640 S-1-2-1	251640 S-1-3-1	251640.5-1.4-1	251640 5-1-5-1
样品性状	水样敬福, 按黄色	水样敞浑, 浅黄色	水样撒浑, 线黄色	水样数浑, 淡黄色	水铝梭环, 浅黄色
掛 (mg/L)	<1,0×10 ⁻¹	1.6×10-1	<1.0×10 ⁻⁸	<1.0×10³	<1.0×10 ⁴
溶解性菌体总量 (mg/L)	099	393	482	218	495
耗氣票 (mg/L)	4.9	5.4	2.8	2.9	2.5
六价络 (mg/L)	<0.004	<0.004	<0.004	<0.004	>00:00
供 (mg/L)	4.59	88.5	8.10	3.16	4.67
程(mg/L)	<0.28	< 0.28	<0.28	<0.28	< 0.28
氧化物 (mg/L)	<0.002	<0.002	<0.002	<0.062	<0.002
色度 (度)	9	\$	10	10	10
ORACOT COMP.C.)	0.081	0.114	860.0	0.070	0.042
可孝敦性石油烃(Cur-Ca) (mg/L)	0.13	70'0	900	50.0	0.05
草片驛*(山山人)	5		<2	V V	V
(1/向1) *提閱日	<0.045	<0.005	<0.005	<0,005	<0.005

采样时间			2025-09-02		
権測点号/点位	S1 - 炎華元地下水监觀 点 W1	S2 一类单元地下水監測 点 W2	\$3 一类单元地下水脂湖 点 W4	S4 二类单元填下水临割 点 W3	SS 地下水监测对阻点 WDZ
存品部分	251640 S-1-1-1	251640 S-1-2-1	251640 8-1-3-1	251640 S-1-4-1	251640 S-1-5-1
样品性状	水拌撒泙, 投資色	水焊酸库, 栈黄色	水样锁浑, 没黄色	水样骸挥, 烧黄色	木件旗仰。
甲氧海酯* (pg/L.)	< 0.005	<0.005	<0.005	<0.005	<0.005
號後繁進器* (pg/L)	<0.03	<0.03	<0.03	<0.03	<0.03
氧戊須醋*(與几)	<0.05	<0.05	<0.05	<0.05	<:0,05
沒氣菊酯* (四儿)	<0.04	<0.04	<0.04	<0.04	<0.0>
四氯化碳* (pg/L)	<0.4	<0.4	<0.4	<0.4	<0,4
(1/84/2)	<0.5	<0.5	<0.S	<0.5	<0.5
繁价*(pg/L)	>0.4	<0.4	<0,4	<0.4	<0,4
#** (m/L)	<0.3	<0.3	<0.3	<0.3	<0.3
苯*(μg/L)	<0.4	₹07	V'0>	<0.4	¥'0>
来之落* (pgL)	<0.2	<0.2	<0.2	<0.2	<0.2
卷-二甲苯*(μg/L)	<0.2	<0.2	<0.2	<0.2	<0.2

(0) 报告编号: 177251640

第33页共35页

表4 地表水枪测结果

米梓时间	2023	2023-09-02
检测点号/点位	S6 地表木匠拠点 DB1	S7 地表水监测点 DB2
各幣理典	251640 S-1-6-1	251640 S-1-7-1
样品性状	水样浅黄色, 无沉淀	水样浅黄色,瓦凯淀
pH 值 (无量例)	7.3	7.2
化學術與量(mg/L)	16.7	15.0
氨氮 (mg/L)	0.914	0.865
总殊 (mg/L)	0.17	0.13
五日生化常氣量 (BODs) (mg/L)	3.6	TO SEE
石油类 (mg/L.)	<0.01	10'0>
总氮 (mg/L.)	0.94	06:0
贸离子表面活性剂(mg/L)	050'0>	05070>
程发酚 (mg/L)	7100.0	0.0014
高保險盐指製 (mg/L)	3.8	3.5
氧化物 (mg/L)	0.32	0,42

采样对何	2025-09-02	-02
檢測点号/点位	S6 地表水监测点 DB1	S7 地表水蓝湖点 DB2
長期間	251640 S-1-6-1	251640 S-1-7-1
样品性状	水样浓黄色,无饥税	水样浅黄色, 无沉淀
氧化物 (mg/L)	1000>	10/0>
氰化物 (mg/L)	100.0>	<0.001
六价格 (mg/L)	<0.004	<0.004
辑 (mg/L)	<0.02	<0.02
俳 (mg/L)	<0.02	<0.02
总碑 (mg/L)	5,1×10³	3.4×10³
位表 (mg/L)	7.60×10 ⁻⁵	7.64×10°
· 总研(mg/L)	4.9×10 ⁻⁴	4.0×10 ⁴
研(mg/L)	+01×00°1>	<1.00×104
掛 (mg/L)	<1,0×10³	<1.0×10 ⁻³
可基取供石油烃(Co-Cu)(mg/L)	0.13	0.06
草甘膦*(ue/L.)	< >	,

第 35 页 共 35 瓜 (M) 报告编号: H1251640

条構成目 2025-09-02 会開点号/点位 \$6 地表水底制点 DB1 \$7 地表水塩割点 DB2 样品情号 251640 S-1-6-1 251640 S-1-7-1 存出情報 水样线黄色, 无流度 水样线黄色, 无流度 有端衛伸 (µg/L) <0.005	WY 3K-D 3H 24 : DAZZ JOSAN		W 25 W W 25 W
参測点号/点位 S6 地表水监拠点 DB1 样品錄号 251640 S-1-6-1 样品條次 水样线黄色,无坑竜 百邊常* (μg/L) <0.005 氧氮氰素酮* (μg/L) <0.005 第三甲素+対-二甲素* (μg/L) <0.03 第二甲素+対-二甲素* (μg/L) <0.05 第二日素* (μg/L) <0.05 第一日素* (μg/L) <0.05 第-二甲素* (μg/L) <0.05	汉祥时间	2025-09-	20
251640 S-1-6-1 木棒线黄色, 无坑蔻 <0.005 <0.03 <0.04 <0.05 <0.05 <0.05 <0.05 <0.02	松淵点	S6 地表水监测点 DB1	87 地表水监测点 DB2
木样技賞色, 无硫酸 <0.005	有幣門材	251640 \$-1-6-1	251640 5-1-7-1
<0.005 <0.005 <0.005 <0.004 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	在状	水样线黄色, 无沉淀	水样残黄色,无炕窑
<0.005 <0.03 <0.04 <0.04 <0.05 <0.05 <0.05 <0.05 <0.05	(工(加), (地里豆	<60,005	<0.005
<0.03 <0.05 <0.04 <0.2 <0.2	叶凯菊脂*(pg/L)		<0.005
<0.05 <0.04 <0.5 <0.2 <0.2	氣氣气蒸醋* (pg/L)	<0,03	<0.03
<0.04 <0.5 <0.2 <0.2	机改划阻*(pg几)	<0.05	<0.05
<0.5	沒無婚職* (48几)	±0.0>	<0.04
<0.2	间-二甲苯+对-二甲苯+(125亿)	<0.5	<0.5
<0.2	本乙烯*(4g/L)	<0.2	<0.2
	総-二甲苯*(μg/L)	¥	<0.2

2、****表示本项自由于实验室任务过重,故分也至浙江中一绘则研究院散役有限公司检测(资质认定证书编号: 221120341058)。 注: 1, ***表示该项目本公司无检测效质, 分包至浙江中一检测研究院理价有限公司检测《餐质认定证书编号: 221120341058》。

CH R 西 発生と

2025年10月15日 被与日报,

(海今月) 紙 共 英 英 大 审核人;

御

以下无正文

(6) 担告编号。10251640

附表 地表水、地下水、土壤、底泥 GPS 定位信息

检测点号	检测点位	GPS	定位
ELIN M. J	THE REAL PROPERTY.	永 经	北纬
GI	土浦(往状)監測点 S1	120" 18" 37.05"	30" 37' 52.40'
G2	土選(柱状) 監測点 S6	120" 18" 37.84"	30° 38' 02.05°
G3	土壤(桂状) 監測点 59	120° 18' 42.90"	30" 37' 54,33'
G4	土韓(往状)监照点 SDZ	120" 18" 34,12"	30" 37" 51,67"
G5	土壤(表层)监测点 52	120" 18" 39.64"	30" 37' 53.11'
G6	土壤 (表层) 监测点 S3	120" 18" 36.83."	30" 37" 54.68"
G7	土壤(表层)监测点 S4	120" 8" 38.93"	30" 37" 57.47"
G8	土壤 (表层) 控測点 S5	120* 18* 40.91*	30" 37' 58:80'
G9	土壤(表层)监视点 87	120" 18" 37.92"	30" 38' 00:01"
G10	土壌 (表层) 推覆点 88	120° 18' 40.44"	30 37 59.72
G11	底源监测点 DNI	120" 18" 35,41"	30" 37' 49.76'
G12	底视监测点 DN2	120" 18' 44.22"	30" 37' 52.57'
S1	一类单元矩下水监棚点 W1	120* 18* 37.05*	30" 37' 52,40'
S2	一类单元地下水监测点 W2	120" 18" 38.93"	30° 37' 57,47'
S3	一类单元地下水监测点 W4	120" 18" 37.84"	30" 38' 02.05'
S4	二类单元地下水监测点 W3	120° 18' 40.91"	30' 37' 58.80'
\$5	地下水监测对照点 WDZ	120" 18" 34.12"	30" 37' 51:67'
\$6	地表水监测点 DBI	120" 18' 35.41"	30" 37" 49.76"
57	地表水监测点 DB2	120" 18" 44,22"	30" 37! 52.57!

图例

注,☆~地表水/地下水采样点,■-土壤/底泥采样点

检验检测报告

报告编号: (D) HJ250150

项目名称

浙江威昇作物科技有限公司 2025 年土壤及地下水自行 检测

委托单位

浙江威昇作物科技有限公司

湖州中一检测研究院有限公司

检测声明

- 1、本报告无本公司检验检测专用章及辅储章均无效。
- 2、未经本公司书面允许,本报告不得部分复印;本报告经部分复印,未加盖本公司检验 检测专用章无效。
- 3、本报告内容需填写齐全, 无本公司审核人、批准人签名无效。
- 4. 本报告内容需填写清楚, 经涂改、增删均无效。
- 5、本报告未经本公司书面同查,不得用于广告、商品宜传等商业行为。
- 6、本报告仅对本次采样样品的检测结果负责。
- 7、委托方若对本报告有异议,请于收到报告之日起15天内向本公司联系。

机构通讯资料:

地址: 新江省湖州市红丰路 1366 号 6 幢 12 层 1206-1210 邮编: 313000

电话: 0572-2619111 传真: 0572-2612266

阿拉: www.zyjchz.com.cn Email: hzzy@zynb.com.cn

	检 测	说明		
受检单位	浙江威昇作物科技有限公司	采样地址	浙江省剧州市德斯县新市镇三8 线 8 号	
委托单位	浙江威昇作物科技有限公司	委托单位地址	新江省湖州市總清县新市镇三章 线 8 号	
联系人/联系方式	商先生/15257242715	检测方案编号	PA (D) 250150	
样品类别	地表水、地下水、底泥	检测类别	委托检测	
采样日期	2025-09-02	检测日期	2025-09-02-2025-09-07	
检测地址	浙江省湖州市红丰路 1366 号 6 幢 1 新江省湖州市塘清县新市镇三新线			
采样力法	地表水环境质量监测技术规范 HJ 164-2 地下水环境流测技术规范 HJ 164-2 水质 采样技术指导 HJ494-2009	1.2-2022		
检劃项目	检测依据	主要分析仪器设备及型号		
类和味	集和崃 生活饮用水标准检验方法 第 4 部分: 建宫性状和物理指标 GB/T 5750.4-2023			
肉酸可见物	生活饮用水标准检验方法 第 4 部分 GB/T 5750.4-2023	糠形瓶便携式 250ml		
2.甲基泰*	fass 气相色谱质谱联用仪			
似虫肼•	水质 有机磷农药的测定 气相色谱		7890B/5977B	
氰化物*	土壤 氰化物和总氰化物的测定 分	光光度法 HJ 745-2015	5 可见分光光度计 L3	

检测结果

表1 地下水枪测结果

果料时间			2025-09-02		
检测点号/点位	S1 一类单元地下 水监斑点 W1	\$2 一类单元地下 水粒测点 W2	\$3 一类单元地下 水推测点 W4	S4 二类单元地下 水监测点 W3	
样品编号	(D) 250150 S-1-1-1	(D) 250150 S-1-2-1	(D) 250150 S-1-3-1	(D) 250150 S-1-4-1	(D) 250150 S-1-5-1
样品性状	水样微浑, 浅黄色	水样衛運。 浅黄色	水样微浑, 浅黄色	水样敬拝。 线黄色	水拌像浑。 浅黄色
臭和味 (无量謝)	等级 0, 强度无, 无任何臭和味	等级 0, 强度无。 无任何美和味	等级 0, 强度无, 无任何皇和味	等级 0. 强度无, 无任何臭和味	

果拌时间	2025-09-02				
检测点号/点位	S1 一类单元地下	52 - 泰華元地下	83 - 类单元地下	84 二类单元地下	S5 地下水蓝测划
	水监视点 W1	水临海点 W2	水监测点 W4	水差测点 W3	胆点 WDZ
样品编号	(D) 250150				
	S-1-1-1	S-1-2-1	S-1-3-1	S-1-4-1	S-J-5-1
尚單可见物	描写可见少量病	指匀有见少量肉	据勾可见少量内	振匀可见少量肉	C
(无量料)	假可见物	眼可见物	跟可见物	眠可见物	
2-甲基率* (jqg/L)	<1.6	<1.6	<1.6	<1.6	<1.6
低虫服* (mg/L)	<0.01	< 0.01	<0.01	< 0.01	<0.01

表 2 地表水检测焦型

采样时间	2025-09-02		
检测点号/点位	S6 地表水应制点 DB1	87 地表水監测点 DB2	
样品编号	(D) 250150 S-1-6-1	(D) 250150 S-1-7-1	
样品性状	水样淡黄色,无沉淀	水样埃黄色。无沉淀	
2-甲基萘* (μg/L)	<1.6	<1.6	
狐虫腈* (mg/L)	< 0.01	<0.0J	

表 3 底泥檢測結果

Car Care and Care			2931
采样时间		2025	09-02
检测点号/点位		G1 底泥监测点 DNI	G2 底泥蓝铜点 DN2
样品的	69	(D) 250150 G-1-1-1	(D) 250150 G-1-2-
民能性状	耐色	深灰色	探灰色
	气味	光	无
水深 ((m)	2.92	2.74
氰化物* (mg/kg)		< 0.04	< 0.04

注: ①****表示速项目分包至浙江中 检测研究院股份有限公司检测(资质从定证书编号: 221120341058)。 ②本报告中检测数据仅作调查研究或内部控制使用。

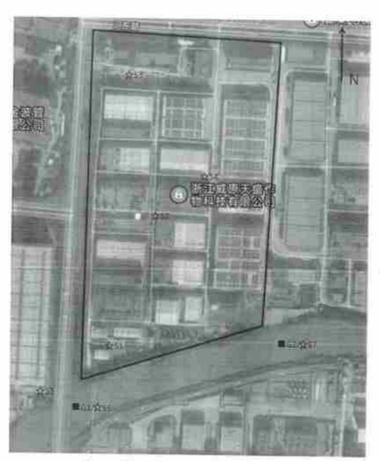
周A (M.A) 编则人

报告日期: 2025年10月15日

(黄 强)

(単多類)

以下无正文


(b) 新台编号。 (D) HJ250150

附表 地表水、地下水、底泥 GPS 定位信息

檢測点号	检测点位	GPS 定位		
18.1976.2	4H 0H /H /H	东经	北纬	
GI	底泥區额点 DN1	120° 18' 35.41"	30" 37' 49.76"	
G2	底流监测点 DN2	120" 18" 44.22"	30" 37' 52.57"	
SI	一类单元地下水监测点 WI	120" 18" 37.05"	30" 37" 52.40"	
S2	一类单元地下水监器点 W2	120" 18' 38,93"	30" 37' 57,47"	
S3	一类单元地下水监测点 W4	120" 18" 37.84"	30" 38" 02,05"	
S4	二类单元地下水监测点 W3	120" 18" 40.91"	30" 37" 58,80"	
S5	地下水蓝圈对照点 WDZ	120" 18' 34.12"	30" 37' 51.67"	
S6	地表水监测点 DB1	120" 18" 35.41"	30" 37" 49,76"	
S7	地表水撒测点 DB2	120" 18" 44.22"	30" 37" 52.57"	

(6) 报告编号: (D) HJ250150

附医

注: ☆-地表水/地下水采样点。■-底泥采样点

3

建井记录表 项目名称 浙江威亞天盛作物科技有限公司退役地块土壤污染状况初步调查监测 括孔编号 W4 施工日期 2024年10月10日 天 气 据孔方式 郵政建井 钻机型号 初见水位译度(a) 1.9 COCS2000 9180 | N=30" 38 ' 02. 15639 " E=120" 18 ' 38, 58171 堆削层铅(9) 12,476井口高程(金) 12.476 监测井结构图 井盖 1.0 地面 地面 膨润±0.0−0.5m 白質0.0-0.5m -13 资本管0.5-5.5m 石英砂0. S-6. 0m 1.00 1.9 -10 -19 100 13 (B) -13 1.00 = 10 78.5mm 建井深度: 6.0m 并管查径: Klass 并管材料: UPVC 流科类型: 4#石英砂(1-2mm) 成并直径: 220mm 并管内径: 57= 滤水管类型, 期壁(0,2mm) 钻视单位: 上海杰顿环保科技工程有限公司 记录员: 张洪铭 事核人: 王亮亮

项目名称	100	江威原天盛作	物科技有限公	公司退役地块土	填污染状况初步调查	10,00
钻孔编号	W3		施工日期 2024年10月10日		用 天气	順
格机型可		GP	钻孔方式	螺旋建井	初见水位深度(a)	1-7
地面高权(m)	12,508	井口高程(m)	12,508	CC52000坐标 N=30	" 37" 58, 69088" E=120"	18, 41, 0197.
		1.00	白管0.0-0.1	1000000000000000000000000000000000000	0, 0-0, 5a	
建井深度; 6.	Ons.	并對直接。	6Лии	78.5mm 井管材料。UPW	波科英丽: (⊭石美砂(1-2 m

建井记录表 項目名称 浙江威亚天盛作物科技有限公司现役地块土壤污染状况初步调查监测 钻孔编号 施工日期 2024年10月11日 晴 天二气 钻机型号 继旋建井 Œ 初见水位深度(4) 钻孔方式 1.7 地面高程(a) 12.54 并口高程(n) 12.54 GGCS2000坐标 N=30" 37" 57, 5383H" E=120" 18' 39, 13542 监测井结构图 井盖 E.O 在英砂以示·6.0± 278.7 Egi 100 建井湿度: 6.0m 井管直径: 63mm 滤料类型: 併石英砂(1-2mm) 并管材料: IPYC 成并直径: 220mm 并背内径: 57mm 能水管类型: 剂键 (0.2mm) 钻探单位。上海杰菔环保料找工程有限公司 记录引: 索洪格 审核人: 王堯亮

建井记录表 项目名称 浙江威原天盛作物科技有限公司退役地块土壤污染状况初步调查监测 钻孔箱号 WI 施工日期 2024年10月10日 无 气 继元建井 钻机型号 GF. 钻孔方式 初见水位深度660 1.8 CGCS20001255 N=30" 37" 52, 74505" E=120" 18" 37, 11502 地面高程(m) 12,646 界口高程(m) 监测井结构图 井盖 白管0.0-0.56 舞洞土0.0-0.5s 石英砂(0.5-6,0m 透水質以 5-12.5% 沉淀膏5.5-6.0m 78. 5mm 建井深度: 6.0m 并曾直径: 63mm 进科类型: 世石英砂(1-2m) 并登材料: 即至 并管内径: 57mm 成并直径: 220mm 钻探单位, 上两杰领环保科技工程有限公司 记录员: 张流信 审核人: 王亮亮

建井记录表 项目名称 浙江咸華天盛作物科技有限公司退役地块土壤污染状况初步调查临测 钻孔编号 WDZ 施工日期 天 气 2024年10月11日 钻机型号 GP. 螺旋建井 初见水位深度(m) 钻孔方式 1.6 12.76 OX:S2000坐标 N=30* 37' 44.78105" E=120* 18' 22.03220' 地面高程(m) 12.5 井口高程(m) 监测井结构图 E 0.00 海水管0.于5.5mm 地區 -iW 131 10 19 -10 1.00 100 100 100 建井深度: 6.0m 井管直径: 63mm 滤料类型: 排石英砂(1-20m) 并暂内径: 87mm 成并直径: 220mm 述水管类型: 創建 (0.2mm) 钻规单位: 上海炎数环保科技工程有限公司 记录员: 张洪地 甲核人: 王花花